
FPRAKER: EXPLOITING FINE-GRAIN SPARSITY TO ACCELERATE NEURAL NETWORK
TRAINING

by

Omar Alaaeldin Mohamed Amin Mohamed Awad

A thesis submitted in conformity with the requirements
for the degree of Masters of Applied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

© Copyright 2020 by Omar Alaaeldin Mohamed Amin Mohamed Awad

Abstract

FPRaker: Exploiting Fine-Grain Sparsity to Accelerate Neural Network Training

Omar Alaaeldin Mohamed Amin Mohamed Awad
Masters of Applied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

2020

This thesis presents FPRaker, a processing element for composing training accelerators. Training manipulates

floating-point data and multiply-accumulate (MAC) operations constitute the bulk of its computations. FPRaker

boosts performance and energy-efficiency by skipping ineffectual computations during training. FPRaker processes

the operands’ significand of each MAC as a series of signed-powers-of-two, or terms. This exposes ineffectual

work that can be skipped: encoded values have few terms and some can be discarded as they would fall outside

the accumulator’s precision. Over 9 studied networks, FPRaker is 1.5× faster and 1.4× more energy-efficient

compared to a baseline accelerator with conventional TensorCore-like tiles under iso-compute-area constraints. We

demonstrate that FPRaker delivers additional benefits when training incorporates pruning [82], quantization [19]

and methods that use a different accumulator precision per layer [98]. Finally, we propose a memory compression

technique for exponents of floating-point values that exploits the narrow value distribution during training using

base-delta compression reducing off-chip memory bandwidth.

ii

Acknowledgements
I would like to deeply thank my supervisor, Prof. Andreas Moshovos, for his patient guidance, feedback, and

support throughout the two years of my Masters at the University of Toronto. I consider myself lucky to be one
of his students and I’ll be forever indebted to him for the so many things he taught me both on the technical and
personal levels.

I would like to express my gratitude to my defense committee members, Prof. Gennady Pekhimenko and Prof.
Paul Chow for their valuable feedback and suggestions for further improving this work. My grateful thanks to
Mostafa Mahmoud with whom I constantly collaborated throughout my research. I also would like to thank my lab
mates: Isak Edo, Ali Hadi Zadeh, Sayeh Sharify, Alberto Delmas, Milos Nikolic, Dylan Malone Stuart, Kevin Siu,
Ciaran Bannon, Eugene Sha. Our technical discussions have made this journey more fruitful and enjoyable.

Finally, special thanks to my parents and sisters for always being there for me. Their continuous support and
love were major sources of encouragement and drive throughout those two years. Thank you for always being by
my side.

iii

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Contributions . 3

1.3 Thesis Organization . 4

2 Background 5
2.1 Introduction to Deep Learning . 5

2.1.1 From Linear Regression to Neural Networks . 6

2.1.2 Neural Networks . 8

2.1.2.1 Convolution Layer . 10

2.1.2.2 Depthwise Separable Convolution Layer . 11

2.1.2.3 Normalization Layers . 11

2.1.2.4 Pooling Layer . 12

2.1.2.5 Activation Layer . 12

2.1.3 Inference . 12

2.1.4 Training . 13

2.2 Networks Studied . 15

2.2.1 Image Classification . 16

2.2.1.1 SqueezeNet 1.1 . 16

2.2.1.2 VGG16 . 17

2.2.1.3 ResNet . 17

2.2.2 Object Detection . 17

2.2.3 Scene Understanding . 17

2.2.4 Recommendation Systems . 17

2.2.5 Natural Language Modeling . 18

2.2.5.1 Bert . 18

2.2.5.2 SNLI . 18

2.3 Summary . 18

3 Related Work 19
3.1 Software Approaches to Accelerate Training . 19

3.1.1 Pruning . 19

3.1.2 Quantization . 19

3.1.3 Selective Back-propagation . 20

iv

3.2 Bit-Serial Hardware Accelerators for Inference . 20
3.3 Floating-Point Arithmetic . 21

3.3.1 Fused Multiply-Accumulate . 21
3.3.2 Bit-Serial Multiply-Accumulate Units . 21

3.4 Accelerators Targeting Floating-Point Ineffectual Computations 21
3.5 Summary . 22

4 FPRaker: DNN Training Accelerator 23
4.1 Ineffectual Work During Training . 23
4.2 Bit-Parallel Baseline Accelerator . 25
4.3 Exposing Ineffectual Work . 27
4.4 Architecture . 28

4.4.1 FPRaker Processing Element . 28
4.4.1.1 Baseline Design . 29
4.4.1.2 2-Stage Shifting . 30
4.4.1.3 Skipping out-of-bounds terms . 32

4.4.2 Simplified Example . 32
4.4.3 Sharing the Exponent Block . 33
4.4.4 Tile Organization . 34

4.5 Exponent Base-Delta Compression . 35
4.6 Data Supply . 36
4.7 Evaluation . 37

4.7.1 Methodology . 37
4.7.1.1 Comparison under ISO-Compute-Area Constraints 38

4.7.2 Area . 38
4.7.3 Execution Time . 39
4.7.4 Energy Efficiency . 39
4.7.5 Performance Analysis . 40

4.7.5.1 Skipped Terms . 41
4.7.5.2 Computation Phase . 41
4.7.5.3 Where Cycles Go . 42
4.7.5.4 Performance Over Time . 43
4.7.5.5 Effect of Tile Organization . 44

4.7.6 Accuracy Study . 45
4.7.7 Per Layer Accumulator Width Profiling . 45

4.8 Summary . 46

5 Conclusion and Future Work 47
5.1 Summary of Contributions . 47
5.2 Directions for Future Work . 48

Bibliography 50

v

List of Figures

2.1 Gradient descent algorithm starts with randomly initialized weights (w0,w1) and incrementally
updates the weights in the direction of the steepest slope in the cost function till it converges to the
global minimum. 7

2.2 A simple 2-layer neural network with ReLU activation function 8

2.3 Deep neural network with several hidden layers . 9

2.4 3D convolution layer . 10

2.5 Depthwise Separable Convolution . 11

2.6 Pointwise Separable Convolution . 11

2.7 Depthwise Separable Convolution followed by Pointwise Separable Convolution 11

2.8 Forward convolution . 14

2.9 Calculating input gradients . 14

2.10 Calculating weight gradients . 14

3.1 Block diagram of floating-point fused multiply-accumulate (FMAC) 21

4.1 Value Sparsity in Tensors During Training. 24

4.2 Term Sparsity in Tensors During Training. 24

4.3 Performance improvement potential of exploiting term sparsity for the three training phases. . . . 25

4.4 Baseline Processing Element . 26

4.5 MAX block: a comparator-tree . 27

4.6 Baseline tile configuration . 27

4.7 FPRaker PE: Baseline Design. 29

4.8 Normalized exponent distribution of layer Conv2d 8 in epochs 0 and 89 of training ResNet34 on
ImageNet. The figure shows only the utilized part of the full range [-127:128] of an 8b exponent. . 31

4.9 FPRaker PE: Modified Design. 31

4.10 FPRaker PE control unit (Reduced Shifting Ctrl) . 32

4.11 FPRaker Processing Example . 33

4.12 Reducing area by sharing the exponent block between two PEs. 34

4.13 A 2×2 PE FPRaker Tile. 35

4.14 Exponent base-delta compression/decompression for a group of 32 values 35

4.15 Memory savings due to exponent base-delta compression. Bars and markers represent compression
channel-wise and spatial-wise, respectively. 36

4.16 ISO-compute-area performance and energy-efficiency comparison between FPRaker and the baseline. 39

4.17 Overall Energy Efficiency of FPRaker vs Baseline. 40

vi

4.18 Breakdown of skipped terms by FPRaker. 40
4.19 Breakdown of FPRaker speedup over the baseline. 41
4.20 Breakdown of execution cycles of FPRaker. 42
4.21 Effect of out-of-bound terms skipping (OBS) on the synchronization overhead. 43
4.22 Speedup of FPRaker vs. the baseline over time. 43
4.23 Speedup of FPRaker vs. the baseline with varying the number of rows per tile. 44
4.24 Varying the number of rows: Breakdown of Cycles. 44
4.25 Top-1 validation accuracy of training ResNet18 by emulating the FPRaker processing in PlaidML. 45
4.26 Performance of FPRaker with per layer profiled accumulator width [98] vs. fixed accumulator width. 46

vii

List of Tables

2.1 Common Activation Functions . 12
2.2 Training Process: Processing of one training sample. Weights are updated per batch (see text).

The notation used for activations, weights, activation gradients, weight gradients is respectively
AS/L

c,x,y,W
L,F
c,x,y,G

S/L
c,x,y,GwS/L,F

c,x,y , where S refers to the training sample, L refers to the network layer, F

is the weight filter, c is the channel number, and x,y are the 2D spatial coordinates. The stride is
denoted as st. 14

2.3 Models Studied . 15

4.1 Baseline and FPRaker configurations. 37
4.2 Breakdown of the area and power consumption per tile of FPRaker vs. Baseline. 38

viii

List of Abbreviations

ML Machine Learning

DL Deep Learning

DNN Deep Neural Network

CNN Convolution Neural Network

GPU Graphics Processing Unit

TPU Tensor Processing Unit

RL Reinforcement Learning

ILSVRC ImageNet Large Scale Visual Recognition Challenge

INQ Incremental Network Quantization

LRN Local Response Normalization

BN Batch Normalization

LSTM Long-Short Term Memory

FC Fully-Connected

BNORM Batch Normalization

NCF Neural Collaborative Filtering

BERT Bidirectional Encoder Representation from Transformers

SNLI Stanford Natural Language Inference

FP Floating-Point

MSB Most Significant Bit

RNE Rounding to nearest Even

MAC Multiply-Accumulate

FMAC Fused Multiply-Accumulate

MLP Multi-Layer Perceptron

PACT PArameterized Clipping acTivation function

PE Processing Element

ReLU Rectified Linear Unit

PReLU Parameterized ReLU

ResNet Residual Network

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

DRAM Dynamic Random Access Memory

ix

Chapter 1

Introduction

1.1 Motivation

Recent advances in Deep Learning (DL) have led to breakthroughs in a wide variety of applications, achieving
unprecedented accuracy in tasks that were considered unfeasible for computing machines to perform. In a very
short time, DL has become the state-of-the-art method for numerous applications such as image classification [64],
speech recognition [43], natural language processing [107], object detection [35], recommendation systems [47],
language modelling [27], neural machine translation [18], and scene understanding [74]. Interestingly, although the
the basic foundations of DL and the core algorithm used to train deep neural networks (DNNs) were established
back in the 1980s [96], it was only recently that we have seen a resurgence of interest in DL with the availability of
large training data sets such as ImageNet [97] and computing hardware that delivers the necessary compute power
to practical DNN models. These two factors have fueled further innovation and as a result more high accurate but
at the same time more demanding DNN models continue to emerge.

The continuous need to achieve higher accuracy on different tasks has led to increasing both the depth (number
of layers) and breadth (layer size) of the neural networks. Whereas a decade ago, the then state-of-the-art neural
networks could be trained on a commodity server within a few hours, today training the best neural networks has
become an exascale class problem whose compute and memory requirements demand weeks of compute time
even with state-of-the-art training methods and on top-of-the-line hardware [9, 115]. Current state-of-the-art neural
networks require many graphics processing units (GPUs) [1], or specialized accelerators such as the TPU [60],
DaVinci [70], Cerebras CS1 [2], or Gaudi [3] for them to be trained within practical time limits, e.g., training
ResNet50 on ImageNet in an hour requires 250 P100 GPUs [38]. Tuning neural networks for state-of-the-art
execution time or accuracy, e.g., via hyperparameter tuning [108] or neural architectural search [31], further
amplifies the cost of training. Training neural networks at edge devices is also required to refine or augment already
existing models with user-specific information and input, known as adaptive learning [13,57,122]. The tradeoffs for
training solutions differ depending on the type of targeted device segment. Specifically, operating and maintenance
costs, latency, throughput, and node count are major considerations for data centers. At the edge, however, energy
and latency are major considerations. Regardless of the application, increasing performance and energy efficiency
of training would be of value.

It then comes as no surprise that efforts to increase the performance and energy efficiency of training have been
considerable. Furthermore, such methods can often be used in combination. Such methods include the following:
Distributed training partitions the training workload across several computing nodes taking advantage of data,

1

CHAPTER 1. INTRODUCTION 2

model, or pipeline parallelism [53, 85, 101, 106, 109]. Timing communication and computation can further reduce
training time [45, 48, 59, 91, 120]. Dataflow optimizations to facilitate data blocking and to maximize data reuse
reduce the cost of on- and off-chip accesses within the node maximizing reuse from lower cost components of the
memory hierarchy [15,34]. Another family of methods reduces the footprint of the intermediate data needed during
training. For example, in the simplest form of training, all neuron values produced during the forward pass are kept
to be used during backpropagation. Batching and keeping only one or a few samples instead reduces this cost [76].
Lossless and lossy compression methods further reduce the footprint of such data [8, 58, 73, 95, 100, 120]. Finally,
selective backpropagation methods alter the backward pass by propagating loss only for some of the neurons [111]
thus reducing work.

While the aforementioned method improve execution time and energy efficiency during training, the need to
boost energy efficiency during inference is leading to techniques that further increase computation and memory
needs of training. This includes works that perform network pruning and quantization during training. Pruning
zero weights creates an opportunity for reducing work and model size during inference. Quantization produces
models that use shorter datatypes that are more energy-efficient to compute such as 16b, 8b or 4b fixed-point values.
Parameter Efficient Training [82], Memorized Sparse Back-propagation [125] are examples of recent pruning
methods. PACT [19] and outlier-aware quantization [88] are state-of-the-art training time quantization methods.
Network architecture search techniques also increase training time as they adjust the model’s architecture [31].

As a result, training remains an exascale class problem and further improvements are needed. In general,
the bulk of the computations and data transfers during training is for performing multiply-accumulate (MAC)
operations during the forward and backward passes of training. I observe that during training, many ineffectual
MAC operations occur naturally and for a variety of models. The goal of this thesis is to design a processing
element (PE) that exploits ineffectual work to reduce energy consumption and to improve execution time.

Since inference is a subcomponent of training and since it also performs many MAC operations, in our quest to
design a processing element (PE) that can eliminate ineffectual work during training, we may attempt to build upon
the numerous proposals that exploit ineffectual work during inference. I highlight some of those approaches that
are most relevant to this work. Any MAC operation where any of the two input operands is zero, be it the activation
or the weight, is ineffectual. The first class of accelerators that exploit ineffectual operations rely on that zeros
occur naturally in the activations of many models especially when they use ReLU [7, 16, 41, 62]. Another class of
accelerators target zeros in weights. Some zero weights naturally occur in DNN models. However, their presence
can be amplified through pruning, a method that converts many of the weights into zeros. Pruning typically requires
training from scratch or extra training epochs [22, 42]. There are several accelerators that target pruned models
e.g., [6, 17, 37, 40, 41, 65, 75, 87, 124, 128]. Another class of designs benefit from reduced value ranges whether
these occur naturally or result from quantization. This includes bit-serial designs [29, 61, 67, 69, 103], and designs
that support many different datatypes such as BitFusion [104]. Finally, another class of designs targets bit-sparsity

where by decomposing multiplication into a series of shift-and-add operations they expose ineffectual work at the
bit-level [6, 25, 102]. These designs exploit the distribution of values in DNNs that, at the bit-level, especially after
Booth-Encoding [10] is skewed towards values that comprise only a few powers of two.

While we can draw from the experience gained from the aforementioned designs for inference, training presents
us with different challenges. First, is the datatype. While models during inference work with fixed-point values of
relatively limited range, the values training operates upon tend to be spread over a much larger range. Accordingly,
training implementations use floating-point arithmetic with single-precision IEEE floating point arithmetic (FP32)
being sufficient for virtually all models. Other datatypes that facilitate the use of more energy- and area-efficient
multiply-accumulate units compared to FP32 have been successfully used in training many models with minimal

CHAPTER 1. INTRODUCTION 3

to no loss in the model accuracy. These include the brain floating-point format (bfloat16), and 8b or smaller
floating-point formats [23,24,39,49,63,117,118]. Moreover, since floating-point arithmetic is a lot more expensive
than integer arithmetic, mixed datatype training methods use floating-point arithmetic only sparingly [23,28,80,86].
Despite these proposals, FP32 remains today the standard fall-back format, especially for training on large and
challenging datasets. Many of the aforementioned inference accelerators rely upon phenomena that emerge due to
the use of fixed-point arithmetic during inference: as a result of its limited range and the lack of an exponent, the
fixed-point representation used during inference gives rise to zero values (too small a value to be represented), zero
bit prefixes (small value that can be represented), and bit sparsity (most values tend to be small and few are large).
In contrast, FP32 can represent much smaller values, its mantissa is normalized, and whether bit sparsity exists has
not been demonstrated.

Second, is the computation structure. Inference operates on two tensors, the weights and the activations,
performing per layer a matrix/matrix or matrix/vector multiplication or pairwise vector operations to produce the
activations for the next layer in a feed-forward fashion. Training includes this computation as its forward pass
which is followed by the backward pass that involves a third tensor, the gradients (see Section 2.1.4 for a primer on
training). Most importantly, the backward pass uses the activation and weight tensors in a different way than the
forward pass (the set of input values that contribute to an output is different between the two passes), making it
difficult to pack them efficiently in memory, more so to remove zeros as done by inference accelerators that target
sparsity. Related to computation structure, third, is value mutability and value content. Whereas in inference the
weights are static, they are not so during training. Furthermore, training initializes the network with random values
which it then slowly adjusts. Accordingly, one cannot necessarily expect the values processed during training to
exhibit similar behavior such as sparsity or bit-sparsity. More so, for the gradients which are values that do not
appear at all during inference.

In this thesis, we target the processing elements for the MAC operations and propose designs that exploit
ineffectual work that occurs naturally during training and whose frequency is amplified by quantization, pruning,
and selective backpropagation. Specifically, we observe that if we decompose each multiplication as a series of
shift-and-add operations of signed powers of two, only a few powers appear per input operand (we target the
activations) and some of those powers can be discarded if we take into account the precision of the floating-point
format used and the current value of the accumulator or other products in a MAC unit that performs multiple MAC
operations in parallel.

1.2 Contributions

This thesis makes the following contributions:

• Demonstrates that a large fraction of the work performed in training is ineffectual. To expose this ineffectual
work we decompose each multiplication into a series of single-bit multiply-accumulate operations. This
reveals two sources of ineffectual work: First, more than 85% of the computations are ineffectual since
one of the inputs is zero. Second, the combination of the high dynamic range (exponent) and the limited
precision (mantissa) often yields values which are non-zero, yet too small to affect the accumulated result,
even when using extended precision (e.g., trying to accumulate 2−64 into 264).

• Proposes FPRaker, a processing tile for training accelerators which exploits both bit-sparsity and out-of-
bounds computations to boost performance and energy efficiency. FPRaker comprises several adder-tree
based processing elements — each processing element performs multiple MAC operations all accumulated

CHAPTER 1. INTRODUCTION 4

into a single output — organized in a grid so that it can exploit data reuse both spatially and temporally. The
processing elements multiply multiple value pairs concurrently and accumulate their products into an output
accumulator. They process one of the input operands per multiplication as a series of signed powers of two
hitherto referred to as terms. The conversion of that operand into powers of two is performed on the fly; all
operands are stored in floating point form in memory.
FPRaker has the following characteristics:

– It does not affect numerical accuracy. The results it produces throughout the training process adhere to
results produced by conventional floating-point arithmetic, and hence achieves similar final validation
accuracy for the trained model.

– It skips ineffectual operations that would result from zero mantissa bits and from out-of-range interme-
diate values.

– Despite individual MAC operations taking more than one cycle, FPRaker’s computational throughput
is higher compared to conventional floating-point units; given that FPRaker processing elements are
much smaller we can fit more of them in the same area.

– It naturally supports shorter mantissa lengths thus rewarding innovation in training methods with
mixed or shorter datatypes [98, 117]. It does so while not requiring that the methods be universally
applicable to all models.

– FPRaker allows us to choose which tensor input we wish to process serially per layer. This allows us to
target those tensors that have more sparsity depending on the layer and the pass (forward or backward).

• Presents a simple, low-overhead memory encoding for floating-point values that relies on the value distribu-
tion that is typical of deep learning training. I observed that consecutive values across channels have similar
values and thus exponents. Accordingly, I encode the exponents as deltas for groups of such values using
the base-delta compression scheme [90]. I use this encoding when storing and reading values off chip, thus
further reducing the cost of memory transfers.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 provides an introduction to DL, discusses the core
operations in DNN models, and presents the DNN models and datasets studied in this thesis. It also discusses
how inference and training tasks for DNNs differ in terms of datatypes, dataflow, amount of computations, and
memory organization. Chapter 3 overviews related work for deep neural network acceleration on both the software
and hardware levels. Further, it overviews floating-point arithmetic and previous work on bit-serial floating-point
multiply-accumulate hardware. Chapter 4 presents the proposed FPRaker training accelerator and evaluates its
execution time performance and energy efficiency. Chapter 5 summarizes the contributions of this thesis and
presents directions for future work.

Chapter 2

Background

This chapter provides the essential background needed to understand the work presented. Section 2.1 first discusses
the fundamentals of machine learning (ML) and how it relates to deep learning (DL). It then discusses the limitations
of some conventional machine learning methods such as linear and logistic regression models which motivate the
introduction of neural networks. Next, it discusses the main computation layers in DNNs. We then end this section
by discussing the two main tasks in DL which are inference and training, highlighting the differences between the
two tasks. Section 2.2 presents the networks studied in this thesis and discusses the application of each network
and the dataset used for training it. Section 2.3 offers a summary for this chapter.

2.1 Introduction to Deep Learning

Computers have been traditionally programmed using conventional algorithms where the programmer defines
and codes the algorithm to solve a specific problem. This is sufficient for problems for which we can define an
analytical solution. For example, a palindrome can be described as a sequence that reads the same backwards as
forward. Therefore, we can write a simple program using a conventional programming language to classify any
given sequence whether it is a palindrome or not. Now let us think of a different example, such as whether an
image contains a dog or a cat, it becomes very challenging to define an analytical solution. This is also the case
for any problem that deals with unstructured data such as image classification, object detection, natural language
processing, and speech recognition. Machine Learning (ML) is a set of algorithms and techniques to solve such
problems, where the algorithm learns how to solve the problem by learning and extracting features from the input
raw data.

The most popular methods in machine learning can be classified into three categories: supervised, unsupervised,
and reinforcement learning. Supervised Learning is the most popular paradigm of ML [68], where the ML model
learns an input-to-output mapping function given enough input training examples with their correct labeled outputs.
Initially, the model predictions will be completely random. The goal of the training process is to minimize the
cost function which is usually the error between the model’s predicted output value and the labeled true output
value over the training examples, and hence increase the model’s accuracy of predicting new inputs that were never
presented the model. Supervised learning can be classified into two types: classification, and regression models.
Classification models try to map an input to a given set of output classes. Models with two, or more output classes
are known as binary, and multiclass classification models, respectively. Regression models targets problems with
continuous output values. Examples of supervised learning are linear and logistic regression [5].

5

CHAPTER 2. BACKGROUND 6

Unsupervised learning features no output labels during training. This makes it especially important since most
data in the world is unlabeled. Instead, the model learns the probability distribution of the input data. This however
makes it hard to define a clear error function to measure the accuracy of the model. Examples of unsupervised
learning are clustering algorithms like k-means [71] and Expectation-Minimization (EM) clustering with Gaussian
Mixture Models (GMM) [77].

Reinforcement learning (RL) is a learning approach based on interaction [112], where the models learns
by receiving either a positive or negative reinforcement after taking each action. The model needs to discover
actions that maximize the reward. The most popular application for RL is teaching machines how to play games,
e.g. AlphaGo beating the world champion in the board game Go in 2016. Recently, RL has been applied in chip
design to automate the placement and routing process, e.g., generating optimized placements for Google’s TPU
that outperforms manually-designed counterparts in less than 6 hours [4].

2.1.1 From Linear Regression to Neural Networks

The simplest supervised learning algorithm is linear regression. It takes an n-dimensional input vector x ∈ Rn and
outputs a scalar value ŷ ∈ R as the prediction for the labeled output value y ∈ R. The model parameters are defined
as a weight vector w ∈ Rn as shown in Equation 2.1.

ŷ = wᵀx (2.1)

During the training process, the model optimizes its parameters to minimize the cost function J(w) commonly
defined as the mean squared error between the prediction ŷ and the labeled output y over m training examples.
Equation 2.2 shows J(w) defined as the squared L2-norm.

J(w) =
1
m

∞

∑
i =1

(ŷi− yi)
2 (2.2)

Equation 2.3 shows the vectorized form of Equation 2.2 with output predictions vector ŷ ∈ Rm, output labeled
vector y ∈ Rm, and a matrix of n-dimensional input vector X ∈ Rm×n.

J(w) =
1
m
‖ŷ−y‖2

2 =
1
m
‖Xw−y‖2

2 (2.3)

To find the values of w that minimize the cost function J(w), an analytical solution can be derived for small
number of training examples by solving the gradient of J with respect to w (∂J

∂w) as follows:

∵ ∇w J(w) = 0 (2.4)

∴
1
m

∇w‖Xw−y‖2
2 = 0 (2.5)

∴
1
m

∇w(Xw−y)ᵀ(Xw−y) = 0 (2.6)

∴ ∇w(wᵀXᵀXw−2wᵀXᵀy+yyᵀ) = 0 (2.7)

∴ (2XᵀXw−2Xᵀy) = 0 (2.8)

CHAPTER 2. BACKGROUND 7

∴ w = (XᵀX)−1Xᵀy (2.9)

However such closed-form solution does not scale well with the increasing the size of the input feature vector,
since the computational complexity of inverting the (XᵀX) matrix is O(n2m). Such optimization problems are
typically solved using the iterative algorithm of gradient descent, where the model parameters w are optimized to
minimize the cost function J in incremental steps scaled with the learning rate α as shown in Equation 2.10. A
very small α would require a large number of steps before the model converges to a global minimum, while a very
large α can lead the model to oscillate, or even overshoot the global minimum and diverge. Parameters like the
learning rate are called hyperparameters which act as tuning knobs for the learning algorithm during training,
and they are typically set manually prior to training.

wi = wi−α
∂J(w)

∂wi
(2.10)

A visualization of the gradient descent algorithm is shown in Figure 2.1.

w0
1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

w1

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Co
st

 fu
nc

ti
on

 J(
w

)

0.2

0.4

0.6

0.8

1.0

Gradient Descent

Figure 2.1: Gradient descent algorithm starts with randomly initialized weights (w0,w1) and incrementally updates
the weights in the direction of the steepest slope in the cost function till it converges to the global minimum.

In binary classification problems, logistic regression is typically used where the output of the model is a
discrete value y ∈ {0,1} representing the probability of the input belonging to class-1, unlike linear regression
which has a continuous output. As shown in Equation 2.11, logistic regression can be seen as a linear regression
followed by the sigmoid non-linear activation function σ .

ŷ = P(y = 1|x;w) = σ(xᵀw), σ(z) =
1

1+ e−z (2.11)

There is no closed-form analytical solution for logistic regression due to the non-linearity of the sigmoid
function, and hence gradient descent is used to optimize the model parameters. Logistic regression uses the negative
log-likelihood instead of the mean squared error as the cost function as shown in Equation 2.12, since the latter

CHAPTER 2. BACKGROUND 8

would result in a non-convex cost function which can lead the model to be trapped in a saddle point and never
converge to the global minimum.

J(w) =− 1
m
[yᵀ log(Xw)+(1−y)ᵀ log(1−Xw)] (2.12)

2.1.2 Neural Networks

Neural networks are a class of machine learning techniques that are loosely inspired by the biological neural
networks in the human’s brain, and currently achieve the state-of-the-art performance on a variety of applications
including image classification, object detection, natural language processing, speech recognition, recommendation
systems, and language modeling. Figure 2.2 shows a simple example of a 2-layer neural network, where the
output value of each node, called an activation, in the output layer is a weighted sum of all the input activations,
hence known as fully-connected (FC) layer, followed by a Rectified Linear Unit (ReLU) activation function. The
connections between activations are called weights. Equation 2.13 shows the computations performed per output
activation, where N and M are the number of input and output activations, respectively, f is a non-linear activation
function such as the ReLU function, and B j is a bias term added per output activation O j.

∀ j ∈ {0,1, ...,M−1} : O j = f (
N−1

∑
i=0

Ai×Wi, j +B j) (2.13)

...

...

A0

A1

A2

AN-1

O0

OM-1

W0,0

W 1,0

W 2,0

W N-
1,

0

W
0,M

-1

W
1,M-1

W
2,M-1

W
N-1,M-1

ReLU

ReLU
Input Layer Output Layer

B0

BM-1

Figure 2.2: A simple 2-layer neural network with ReLU activation function

Deep neural networks are organized as layers arranged in a pipelined fashion where the output values of one
layer are fed as inputs to the next layer as shown in Figure 2.3. For clarity, weight connections between layers are
represented as a single connection labeled Wi, where i is the layer number. Increasing the number of hidden layers,

CHAPTER 2. BACKGROUND 9

i.e., a deeper neural network, can increase the model capacity to perform more complex tasks [93], however this
can have diminishing returns to the model accuracy due to overfitting [114], i.e., model learns training set too well
(high training accuracy) and does not perform well on new input samples (low validation accuracy).

...

...

A0

A1

A2

AN-1

...

...W1 W2 ...

O0

OM-1

Input Layer Hidden Layer 1
Hidden Layer 2

Output Layer

Figure 2.3: Deep neural network with several hidden layers

Multi-layer neural networks with fully-connected activations between consecutive layers are known as Multi-
layer Perceptrons (MLP). While MLP networks can be a good fit for some applications, they usually have
expensive computation and memory requirements due to the large number of model’s weight parameters. Con-
volution neural networks (CNNs) address this problem by introducing convolution layers. In fully-connected
layers, each output activation is calculated through all activations in an input image. In some applications, the
input features are limited in spatial scope. Hence, convolution layers are used as feature detectors to capture
correlations among inputs activations that gives rise to the detection of a feature. This allows convolution layers
to reduce the models weight parameters by sharing the same weight filters across multiple output activations,
where it looks for the desired feature by inspecting only a limited set of input activations at a time in a strided
window fashion. Accordingly, using convolution layers leads to a reduced computation and memory requirements
compared to fully-connected layers with the same number of input and output activations. CNNs are typically used
in applications such as image classification, object detection, image segmentation and captioning achieving the
state-of-the-art accuracy for these applications.

Standalone CNNs, however, are not a good fit for applications that require keeping track with previous inputs
such as natural language processing, neural machine translation, recommendation systems, and speech recognition.
Recurrent neural networks (RNNs) address this issue. RNNs can capture temporal information and dependencies
in sequential input data streams using their internal memories. One issue with conventional RNNs is learning
long-term dependencies in the input data due to the vanishing gradient problem [52]. Long-Short Term Memory
(LSTM) networks were introduced to address this issue by adding a gated cell which enables them to capture
long-term dependencies by controlling the information flow and keeping track with only important data.

This thesis focuses on accelerating both convolution and fully-connected layers. CNNs are dominated by
convolution layers, while fully-connected layers usually account for less than 10% of the overall execution time.

CHAPTER 2. BACKGROUND 10

However, fully-connected layers dominate transformer-based, recommendation, and LSTM-based networks. The
four main types of layers in DNN are convolution, fully-connected, normalization, and pooling layers. Since
fully-connected layers were discussed previously, the following discussion reviews convolution, normalization, and
pooling layers.

2.1.2.1 Convolution Layer

Figure 2.4 shows a convolution layer where input and output activations are organized as 2D tensors, each
representing a feature, stacked along the channel dimension to construct 3D tensors. The 3D tensors have the shape
of (H,W,C) representing the height, width, and number of channels of the tensor, respectively. Convolution layers
have K weight filters, denoted as f 0, f 1, ..., f K−1. Each filter is applied in a sliding window fashion across the
horizontal and vertical dimensions of the 3D input tensor with some stride S. The application of one filter produces
a 2D output tensor (1 channel). The 2D output tensors, each produced by a different filter, are stacked along the
channel dimension to form a 3D output tensor that is fed as an input to the next layer. Assuming an input activation
tensor with dimensions C×H×W , K 3D filters with dimensions C×H f ×Wf , sliding window of stride S, the
resulting output activation tensor is of size K,Ho,Wo where the output height is calculated as:

Ho =
H−H f

S
+1 (2.14)

and the output width is calculated as:

Wo =
W −Wf

S
+1 (2.15)

C

H

W

K

...

C

Hf

Wf

f0

fk-1

K

Ho

Wo

window

Input Activations Filters Output Activations

Figure 2.4: 3D convolution layer

Each output activation is resulting from the inner product of a filter and a sub-array of the input activation
tensor with similar size, known as window. If a, and f n are, respectively, the input activation, nth filter, then the
corresponding output activation is computed as:

o(n,y,x) =
C−1

∑
c=0

H f−1

∑
j=0

W f−1

∑
i=0

f n(c, j, i)×a(c, j+ y×S, i+ x×S) (2.16)

After computing the inner product in Equation 2.16, a bias term is added to the output activation which then

CHAPTER 2. BACKGROUND 11

passes by a non-linear activation function.

2.1.2.2 Depthwise Separable Convolution Layer

The convolution layer captures two types of correlation in the input activation tensor: intra-channel, and inter-
channel correlation. While regular convolution layers captures these two types of correlation in one step, the
depthwise separable convolution extract such correlations using two convolution layers instead: 1) a layer with
C depthwise separable filters, i.e. each input activation channel is convolved with a 2D filter to extract the
intra-channel correlation as shown in Figure 2.5, and 2) a layer with N pointwise separable filters to extract the
inter-channel correlation as shown in Figure 2.6. Stacking these two types of convolution layers combines the
intra-channel and inter-channel correlations. The advantage of the depthwise separable convolution is the fewer
computations compared to the corresponding regular convolution which make it a good fit for mobile and embedded
applications. However, networks with depthwise separable convolution are usually less accurate compared to using
regular convolutions.

C

H

W

C ...

Hf

Wf

C

Ho

Wo

window

Input Activations Depthwise Separable Filters Output Activations

1

f0

fC-1

Figure 2.5: Depthwise Separable Convolution

C

H

W

K

...

C

f0

fk-1

K

Ho

Wo

window

Input Activations Pointwise Filters Output Activations

1
1

Figure 2.6: Pointwise Separable Convolution

Figure 2.7: Depthwise Separable Convolution followed by Pointwise Separable Convolution

2.1.2.3 Normalization Layers

Local Response Normalization (LRN) is a compute heavy layer that was used in early CNN models such as
AlexNet [64] to normalize each element in the input activation tensor with respect to the other elements at the same

CHAPTER 2. BACKGROUND 12

location in the adjacent N input activation tensors using the formula in Equation 2.17.

o(c,y,x) = a(c,y,x)× (1+α

c+N
2

∑
i=c−N

2

(a(i,y,x))2)−β (2.17)

The function of LRN layer is create lateral inhibition of the output activation values especially when using an
unbounded activation function such as ReLU [51]. This layer, however, is removed in newer models such as the
ResNets [46] and sometimes replaced by a batch normalization (BNORM) layer followed by scaling, which
reduced the required training steps while achieving similar accuracy. Equation 2.18 shows the computation for
the BNORM layer where µ and σ2 are statistically computed over the training dataset, while γ and β are learned
during training [56].

o(c,y,x) = γ× (
a(c,y,x)−µ√

σ2
)+β (2.18)

After training a network, the µ,σ2,γ,β are all constants in the BNORM layer. Accordingly, Equation 2.18 can be
simplified to the following Equation where A = µ√

σ2 and B = β − γµ√
σ2 :

o(c,y,x) = A×a(c,y,x)+B (2.19)

2.1.2.4 Pooling Layer

A Pooling (POOL) layer acts as a down-sampling function such that the input activation tensor of size Nx×Ny is
reduced in size with the same number of channels, input and output activation tensors. Examples of POOL layers
are the Max-POOL and Average-POOL layers where each element in the output activation tensor represent the
maximum and average value of a window of size Kp×Kp in the input activation tensor respectively.

2.1.2.5 Activation Layer

Table 2.1 shows the most commonly used activation functions in DNNs. ReLU is the most commonly used
activation function and especially in CNNs, since it requires low computation and leads to a faster training process.

Table 2.1: Common Activation Functions

Function Definition

ReLU ReLU(x) =

x, i f x > 0

0,otherwise

Sigmoid σ(x) = 1
1+e−x

Hyperbolic Tangent tanh(x) = ex−e−x

ex+e−x

Parameterized ReLU (PReLU)
PReLU(x) =

x, i f x > 0

ax,otherwise

[for a = 0.01 =⇒ LeakyReLU(x)]

2.1.3 Inference

Inference applies the acquired knowledge of a trained neural network model given a new input to infer the result.
The computations involved in inference were previously discussed in Section 2.1.2. As shown previously, inference
involves two input tensors, the weights and the activations, which are used in only one computation, typically a
matrix-matrix multiplication or a matrix-vector multiplication. Thus, the two tensors can be laid out in memory in a

CHAPTER 2. BACKGROUND 13

way that serves a specific access pattern facilitating data parallel, and thus energy-efficient, fetching and execution.
Inference is performed using fixed-point datatypes such as 16b, 8b, or of even shorter lengths in some cases such as
4b or 1b. Inference is usually performed on a single input at a time. This is done to minimize response latency in
time critical applications or user interactive ones. In some applications, several inputs can be processed together,
a process referred to as batching. This results in higher reuse of weights and can reduce overall memory traffic.
However, this comes at the expense of individual input latency.

This thesis focuses on training whose forward propagation pass is identical to inference. The next section
discusses this in more detail.

2.1.4 Training

The goal of training is to adjust the weight values so that the network can perform the desired task with high
accuracy. There are several variants of training and without loss of generality we describe the basic process.
Training starts by setting the weights to some “random” values. Then training repeatedly goes over a large set of
annotated samples adjusting the weight values per batch. These samples are inputs for which the desired output
is already known. The samples are processed in batches. For each batch training performs the forward pass and
calculates a set of outputs. These outputs are “compared” with the annotated, desired outputs. The comparison
takes the form of a loss function which is a measure of how “far” the current outputs are from the desired ones.
The loss values are the propagated backwards through the network where they are used to adjust the weights. The
back propagation happens per sample, whereas the changes to the weights are aggregated over the whole batch and
applied once. We describe the forward and backward passes for convolutional layers first.

The forward pass is the same as inference. A sample is processed though a series (really a directed acyclic
graph) of layers to produce the final output. Each layer accepts as input a 3D array I (feature maps containing
activations) and a set K of 3D arrays W (filters containing weights) and produces an output array O (output
activations). O becomes the input for the next in series layer and the process repeats. The width and height of I is
usually much larger than that of the W . The convolutional layer applies 3D convolution of I with the W filters to
produce the output. The convolution is applied in a sliding window fashion. Each convolution of one W with one
window of I produces a single O value.

The backward pass updates the weights and the activations. Informally, compared to what the output activation
of each layer was during the immediately preceding forward pass, we now have an updated activation which is
expressed as a small change in the output value (gradient). The goal is to propagate this small change to the inputs
to “nudge” them so that the error might be reduced during the next forward pass. Accordingly, to calculate the
change for each input we have to backpropagate the changes from all outputs it influenced. In a way we have
to perform the “mirror” computation that was performed for the forward pass. Each layer convolves its output
gradients with the weights to produce the input gradients to be fed to the preceding layer. The layer also convolves
its output gradients with its input activations to calculate the weight gradients. The per layer weight gradients are
accumulated across the training samples within a mini-batch and used to update the weights once per mini-batch,
or iteration, as described by Equation Eq. (2.20), where i is the layer number, t is the iteration number, α is the
learning rate, and S is the mini-batch size.

W t+1
i =W t

i −α ∗
S

∑
s=0

Gws
i/S (2.20)

Table 2.2 describes the operations in more detail. For clarity, Figs 2.8-2.10 show the operations only for the
convolutional layers. A fully-connected layer can be treated as a special-case convolutional layer where all input
tensors are of equal size.

CHAPTER 2. BACKGROUND 14

Table 2.2: Training Process: Processing of one training sample. Weights are updated per batch (see text). The nota-
tion used for activations, weights, activation gradients, weight gradients is respectively AS/L

c,x,y,W
L,F
c,x,y,G

S/L
c,x,y,GwS/L,F

c,x,y ,
where S refers to the training sample, L refers to the network layer, F is the weight filter, c is the channel number,
and x,y are the 2D spatial coordinates. The stride is denoted as st.

Forward Pass

Figure 2.8: Forward convolution

Convolutional Layer: A sliding-window 3D convolu-
tion is performed between the input activations and each
of the weight filters to produce one channel in the output
activations:

AS/i+1
oc,ox,oy =

C

∑
ci=0

Kx

∑
xi=0

Ky

∑
yi=0

AS/i
ci,ox∗st+xi,oy∗st+yi ∗W i,oc

ci,xi,yi (2.21)

Fully-Connected: Each filter produces one output acti-
vation:

AS/i+1
oc =

C

∑
ci=0

AS/i
ci ∗W i,oc

ci (2.22)

Backward Pass
Input Gradients

Figure 2.9: Calculating input gradients

Convolutional Layer: A sliding-window 3D convolu-
tion is performed between a reshaped version of the filters
with the activation gradients from the subsequent layer.
The filters are reconstructed channel-wise and rotated by
180 degrees and the activation gradients are dilated by the
stride st.

GS/i−1
oc,ox,oy =

F

∑
ci=0

Kx

∑
xi=0

Ky

∑
yi=0

GS/i
ci,ox+xi,oy+yi ∗Wrotated

i,ci
oc,xi,yi (2.23)

Fully-Connected: The filters are reconstructed as above.
No dilation of the activation gradients.

GS/i−1
oc =

F

∑
ci=0

GS/i
ci ∗W i,ci

oc (2.24)

Weight Gradients

AS/i

Figure 2.10: Calculating weight gradients

Convolutional Layer: The weight gradients are accu-
mulated across batch samples. Per sample, it is calculated
as a 2D convolution between the input activation and the
output gradients which are dilated according to the stride.

Gwtotal/i, f
oc,ox,oy =

S

∑
si=0

Nox

∑
xi=0

Noy

∑
yi=0

Gsi/i
f ,xi,yi ∗Asi/i

oc,ox+xi,oy+yi (2.25)

Fully-Connected: Each weight gradient is a scalar prod-
uct of the input activation and the gradient of the output
activation it affects accumulated over samples.

Gwtotal/i, f
oc =

S

∑
si=0

Gsi/i
f ∗Asi/i

oc (2.26)

CHAPTER 2. BACKGROUND 15

There are three major differences between the training and inference phases. First, is the datatype. While
models during inference work with fixed-point values of relatively limited range, the values training operates
upon tend to be spread over a large range. Accordingly, training implementations use floating-point arithmetic
with single-precision IEEE floating point arithmetic (FP32) being sufficient for virtually all models. Other
datatypes that facilitate the use of more energy- and area-efficient multiply-accumulate units compared to FP32
have been successfully used in training many models. These include bfloat16, and 8b or smaller floating-point
formats [23, 24, 39, 49, 63, 117, 118]. Moreover, since floating-point arithmetic is a lot more expensive than integer
arithmetic, mixed datatype training methods use floating-point arithmetic only sparingly [23, 28, 80, 86]. Despite
these proposals, FP32 remains today the standard fall-back format, especially for training on large and challenging
datasets.

Second, is the computation structure. Inference operates on two tensors, the weights and the activations,
performing per layer a matrix/matrix or matrix/vector multiplication or pairwise vector operations to produce the
activations for the next layer in a feed-forward fashion. Training includes this computation as its forward pass
which is followed by the backward pass that involves a third tensor, the gradients. Most importantly, the backward
pass uses the activation and weight tensors in a different way than the forward pass, making it difficult to pack
them efficiently in memory.

Related to computation structure, third, is value mutability and value content. Whereas in inference the
weights are static, they are not so during training. Furthermore, training initializes the network with random values
which it then slowly adjusts. Accordingly, one cannot necessarily expect the values processed during training to
exhibit similar behavior such as sparsity or bit-sparsity. More so, for the gradients which are values that do not
appear at all during inference.

Fourth, is the batch size. Inference is typically performed with a single input example at a time, i.e. batch size
of one. Training computes the gradients on a mini-batch of examples before updating the weights. A mini-batch is
typically 64-256 examples. Mini-batches also increase training performance by computing each layer for a batch
of examples at a time, which increases weight reuse for each training pass. The concept of propagating multiple
examples at once is known as batching.

Table 2.3: Models Studied

Model Application Dataset
SqueezeNet 1.1 Image Classification ImageNet [97]

VGG16 Image Classification ImageNet [97]

ResNet18-Q Image Classification ImageNet [97]

ResNet50-S2 Image Classification ImageNet [97]

SNLI Natural Language Inference SNLI Corpus [11]

Image2Text Image-to-Text Conversion im2latex-100k [119]

Detectron2 Object Detection COCO [72]

NCF Recommendation ml-20m [44]

Bert Language Modeling WMT17 [30]

2.2 Networks Studied

In this thesis, we study the performance and energy-efficiency of the proposed accelerator on networks across a wide
variety of applications. Table 2.3 lists the models studied. Our workloads includes models that have been optimized

CHAPTER 2. BACKGROUND 16

using two widely used methods: quantization and pruning. Quantization changes the datatype used by the model
to one that is more energy efficient to store and compute with. For example, rather than using 32b floating-point
numbers, after quantization the model uses fixed-point numbers that are also narrower, e.g., 4b. Pruning converts
some weights to zero which opens up opportunities for model compression (avoids storing the zero weights) and
computation reduction (omit the MAC operations where the weight is zero). ResNet18-Q is a variant of ResNet18
trained using PACT [19] which quantizes both activations and weights down to 4b during training. ResNet50-S2 is
a variant of ResNet50 trained using dynamic sparse reparameterization [83] which targets sparse learning that
maintain high weight sparsity throughout the training process while achieving accuracy levels comparable to
baseline training. SNLI performs natural language inference and comprises of fully-connected, LSTM-encoder,
ReLU, and dropout layers. Image2Text is an encoder-decoder model for image-to-markup generation. We study
three models of different tasks from the MLPerf training benchmark [78]: 1) Detectron2: an object detection
model based on Mask R-CNN, 2) NCF: a model for collaborative filtering, and 3) Bert: a transformer-based model
using attention.

For our measurements we sample one randomly selected batch per epoch over as many epochs as necessary to
train the network to its originally reported accuracy (up to 90 epochs were enough for all).

We next provide additional information about the networks used as benchmarks in this thesis and including the
corresponding training datasets we used.

2.2.1 Image Classification

The task of recognizing an object within an image is called image classification, which is the domain that started
the resurgence of attention to deep learning. The networks studied for this task are convolutional neural networks
(CNNs). The dataset used to train image classification networks in this thesis is ImageNet [97], which is a
large dataset of colored images initially developed for the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC). The ILSVRC 2012 dataset used in this thesis consists of 1.2 million training images, 50,000 validation
images, and 1,000 classes. The dataset has two well-known performance metrics to report accuracy: top-1 and
top-5. The top-1 metric represents the percentage of example for which the predicted class with the highest
probability matches the target label. The top-5 is a less strict metric representing the percentage of examples whose
any of its five predicted classes with highest probability matches the target label.

2.2.1.1 SqueezeNet 1.1

SqueezeNet [54] is a CNN that has 50× less parameters than AlexNet with an accuracy comparable to AlexNet on
the ImageNet dataset. A compressed Squeezenet has a small memory requirement of less than 0.5MB, i.e. 510×
smaller than AlexNet without compression. The building block of SqueezeNet is the fire module, which contains
two layers: a squeeze layer and an expand layer. The squeeze layers are made up of 1× 1 filters (as a form of
model compression) capturing correlation along the channel dimension, while the expand layers consist of a mix
of 1×1 and 3×3 filters to capture the spatial correlation. A SqueezeNet stacks a number of fire modules and a
few pooling layers. The squeeze layer and expand layer keep the same feature map size, while the former reduces
the depth to a smaller number (by having a small number of filters), and the latter increases it (by having a larger
number of filters). The squeeze layer, also known as the bottleneck layer, and the expansion behavior are common
in neural architectures.

CHAPTER 2. BACKGROUND 17

2.2.1.2 VGG16

The Visual Geometry Group (VGG) [107] at the University of Oxford proposed several image classification
networks that achieve high accuracy on the ImageNet dataset. Among the proposed networks is VGG16, which
achieved the second best top-5 accuracy in the ILSVRC 2014 competition with 92.7% accuracy. VGG16 consists
of 13 3×3 convolution layers with unit stride followed by 3 fully-connected layers.

2.2.1.3 ResNet

One of the major challenges in training DNNs is the vanishing gradient problem. This happens when backpropa-
gating an error gradient through many layers with certain activation functions such as tanh and sigmoid, where the
values of gradients shrink towards zero. This behavior effectively prevents weight updates, and hence makes the
network harder to train.

The Residual Network (ResNet) [46] was developed to solve the vanishing gradient problem. It uses residual
blocks each of which contains a bypass layer which allows the gradients to reach deeper layers more easily. In
residual blocks, the output of a layer is connected as a direct input to the next and to the second next layer through
a bypass connection. ResNet50 is a variant of ResNet, which has 49 convolution layers followed by a single
fully-connected layer. ResNet was the winning network architecture in ILSVRC 2015 with 96.4% top-5 accuracy.
ResNet18 is a smaller variant of ResNet that has 17 convolution layers followed by a fully-connected layer.

2.2.2 Object Detection

Object detection is the task of identifying objects in images or videos. Typically, the task of an object detection algo-
rithm is to predict a bounding box and a class for each object in the given input image. We study Detectron2 [121]
which is a recent object detection network from the MLPerf training benchmark, which is based on the Mask-RCNN

model. The Base-RCNN with feature pyramid network (Base-RCNN-FPN), also known as Faster-RCNN-FPN, is
the basic bounding box detector used in the Mask-RCNN model. Base-RCNN-FPN is the de-facto standard detector
that can detect multi-scale objects, i.e., from tiny to large objects, with high accuracy. We trained Detectron2 using
COCO [72] dataset, which is a large-scale object detection, segmentation, and captioning dataset.

2.2.3 Scene Understanding

Scene understanding, also known as captioning, is the task of generating a human-level natural language description
given an input image. We study Image2Text [116], network which deals with image captioning as a multimodal
translation task using a sequence-to-sequence recurrent neural networks (RNN) model for image caption generation.
Instead of representing the whole image using a CNN model, the Image2Text network represents the input image as
a sequence of detected objects to serve as the source sequence of the RNN model. We train the Image2Text using
the im2latex-100k [119] dataset, which is a pre-built dataset for OpenAI’s task for image-2-latex system.

2.2.4 Recommendation Systems

We study the Neural Collaborative Filtering (NCF) [47] network that tackles collaborative filtering, which is the
key problem in recommendation, on the basis of implicit feedback. The past interactions of users and items are
recorded in a matrix format called “user-item interaction matrix”. Previously, the user interaction with the item
features resorted to matrix factorization and applied an inner product on the latent features of users and items. NCF
replaces the inner product with a multi-layer perceptron (MLP) that learns the user-item interaction function, which

CHAPTER 2. BACKGROUND 18

is a function representing the user-item interaction matrix. We trained NCF using the ml-20m [44] dataset, which
contains 20 million ratings and 465,000 tag applications applied to 27,000 movies by 138,000 users.

2.2.5 Natural Language Modeling

The goal of a language model is to calculate the probability of a token, i.e., a sentence or a sequence of words.
Language model acts as the grammar of a language as it gives the probability of the word that will follow. We
studied two networks for this task: Bert-Base, and SNLI.

2.2.5.1 Bert

Bidirectional Encoder Representations from Transformers (BERT) [27] is a trained Transformer Encoder stack
with twelve encoders in the Base version, and twenty-four encoders in the Large version compared to only 6
encoder layers in the original Transformer model. BERT encoders have larger feed-forward networks with 768
and 1024 nodes in Base and Large models respectively, and more attention heads with 12 and 16 heads in the
Base and Large models respectively. In this thesis, we study the BERT-Base model. BERT was trained on the
Wikipedia and Book Corpus [79], a dataset containing +10,000 books of different genres. BERT achieves high
accuracy on a wide variety of language tasks such as question answering [94], named entity recognition [113], and
sentiment analysis [84]. Each task requires minimal fine-tuning starting from a pre-trained model, i.e., only certain
hyperparameters need to be tuned while most hyperparameters stay the same.

2.2.5.2 SNLI

The aim of the Stanford Natural Language Inference (SNLI) [11] model is to determine if a premise sentence
is entailed, neutral, or contradicts a hypothesis sentence, e.g., “A basketball game with multiple people playing”
entails “Some people are playing a sport”, while it contradicts “A man is playing a sport alone”. The SNLI model
is a stack of three 200-dimensional FC layers each followed by a tanh activation function with the first layer taking
the concatenated sentence representations as input and the final layer feeding a softmax classifier, all trained jointly
with the sentence embedding model itself using the SNLI training corpus.

2.3 Summary

This chapter provides an introduction to machine learning (ML) with a focus on deep learning (DL), and discussed
the limitation of linear regression models which motivated the development of neural networks. It reviewed the
different layers that are used by DNNs, namely fully-connected, convolution, depthwise separable convolution,
normalization, pooling, and activation layers. Moreover, this chapter discussed the two main tasks in deep learning:
inference and training, and explained the differences between the two tasks in terms of the used datatypes, dataflow,
and batch size thus explaining that the tradeoffs and requirements for training accelerators are different than those
for inference-only ones. Finally, it discussed the studied networks in this thesis and their corresponding training
datasets.

Chapter 3

Related Work

This chapter discusses the related work to this thesis. Section 3.1 overviews popular software techniques to acceler-
ate DNN training. Section 3.2 discusses previous work on bit-serial inference accelerators. Section 3.3 provides an
overview on floating-point arithmetic and previous work on bit-serial floating-point multiply-accumulate units.
Section 3.4 reviews previous work on accelerators targeting removing the floating-point ineffectual computations
and compares it to FPRaker. Section 3.5 provides a summary for this section.

3.1 Software Approaches to Accelerate Training

This section overviews software approaches to reduce the computation and memory requirements of DNN training.
The following subsections discuss some of these approaches.

3.1.1 Pruning

The goal of pruning is to convert some, ideally unimportant or ineffectual, weight values to zero. Dynamic sparse
reparameterization [82], sparse momentum [26], and eager pruning [123] are recent training-time pruning methods
that achieve high sparsity levels with minimal or no effects on output accuracy. Dynamic sparse reparameterization
is a technique based on dynamically allocating non-zero parameters during training through network structural
exploration allowing direct training of sparse models without having to pre-train a large dense model while
achieving comparable accuracy. Sparse momentum is an algorithm which uses exponentially smoothed gradients
(momentum) to identify essential layers and weights for reducing the training error efficiently.

3.1.2 Quantization

The goal of quantization is to reduce the data width that will be used during inference and/or training. During
training, quantization effectively clips what would otherwise be values of low magnitude into zeros. A low-
precision training algorithm was proposed by Coubariaux et al. [21] to reduce the computation overhead in DNNs
which is applicable for fixed-point, floating-point, and dynamic fixed-point operations. The proposed training
algorithm performs both training forward and backward propagations with low precision, while weight updates
are performed using high precision. DoReFa-Net [127] is a training method for CNNs using low precision for
activations, weights and gradients. Using 2b activations, 1b weights and 6b gradients, DoReFa-Net achieved a top-1
accuracy for AlexNet comparable to training using FP32 format. Value-aware quantization [89] is a technique

19

CHAPTER 3. RELATED WORK 20

applied for both training and inference which represents most of the data using aggressively reduced precision
while large data values are separately handled using higher precision. PArameterized Clipping acTivation function
(PACT) [19] is a technique that enables training DNNs using ultra low precision, i.e., 2-4b, with no or minimal
loss of accuracy. PACT uses an activation clipping parameter that is optimized during training in order to find the
optimal quantization scale for activations.

3.1.3 Selective Back-propagation

Selective back-propagation is an approach to reduce the computational requirement in back-propagation during
training. MeProp [111] sparsifies the back-propagation by selecting only a small subset of the full gradients to
update the model parameters. MeProp back-propagates only the top-k gradient values in terms of magnitude.
DropBack [36] is another technique that constraints the total number of weight updates during back-propagation
to those with the highest total gradients. Weights that are not updated are discarded and their initial values are
regenerated at every access to avoid storing them in memory. This technique reduces the memory requirement and
number of off-chip memory accesses for training.

3.2 Bit-Serial Hardware Accelerators for Inference

Bit-skipping processing of multiply-accumulate operations has been proposed before for inference. Bit-Pragmatic
is a data-parallel processing element that performs such bit-skipping of one operand side [6] whereas Laconic does
so for both sides [102]. Since these methods target inference only they work with fixed-point values. Since we
found that there is little bit-sparsity in the weights during training, we focused on the Bit-Pragmatic’s approach.
Converting a fixed-point design to floating-point is a non-trivial task to start with. Regardless, converting Bit-
Pragmatic into floating-point resulted in an area-expensive unit that performs poorly under iso-compute-area
constraints (see Section 4.7.1.1). Specifically, compared to an optimized Bfloat16 bit-parallel processing element
(see Section 4.2) that performs 8 MAC operations, under ISO-compute constraints, an optimized accelerator
configuration using the Bfloat16 Bit-Pragmatic PEs is on average 1.72× slower and 1.96× less energy efficient.
In the worst case, the Bfloat16 bit-pragmatic PE was 2.86× slower and 3.2× less energy efficient. The Bfloat16
Bit-Pragmatic PE is 2.5× smaller than the bit-parallel PE, and while we can use more such PEs for the same area,
we cannot fit enough of them to boost performance via parallelism as required by all bit-serial and bit-skipping
designs.

At the microarchitectural level, FPRaker is a floating-point PE where the processing of values differs sig-
nificantly from that of fixed-point values. The similarity between FPRaker and Bit-Pragmatic is limited in the
use of the 2-stage shifting technique, which we adapted to reduce the area of our adder tree. Laconic uses a
unique processing element which is designed for fixed-point arithmetic only. Extending it to support floating-point
operation is left for future work.

Compared to inference, training performs more computation and requires a larger volume of data to be kept
around. While in inference, activations and weights are used only once during training, they are used twice and
more importantly the dataflow is different between these two uses. This challenges several optimizations that
are otherwise possible in inference. For example, inference accelerators targeting sparsity such as Cambricon-
X [124] or SCNN [87] prepack values in memory according to a pre-determined dataflow to eliminate zero values.
Unfortunately, this is not directly compatible with training as the order in which values will be accessed during
backpropagation needs to be different than that during the forward pass (inference).

CHAPTER 3. RELATED WORK 21

3.3 Floating-Point Arithmetic

3.3.1 Fused Multiply-Accumulate

Fused multiply-accumulate (FMAC) units combine the multiplication and accumulation steps by skipping the
normalization step after multiplication and directly adding the resulting product with the accumulator. FMAC
reduces the area and latency of the multiply-accumulate operation. Figure 3.1 shows a block diagram of the steps
in the FMAC operation.

Start

1- add exponents + multiply significands

2- compare product and acc. exponents +
find exponent difference

3- align product and acc. significands

4- add/subtract significands

5- normalize sum: either shifting right by 1b and
increment exponent or shifting left by the number

of leading zeros and decrement exponent

Finish
m

ul
tip

ly
ac

cu
m

ul
at

e

Figure 3.1: Block diagram of floating-point fused multiply-accumulate (FMAC)

3.3.2 Bit-Serial Multiply-Accumulate Units

Bit-serial arithmetic circuits have long been used in embedded applications such as in signal processing with the
emphasis being on reducing cost and where performance was acceptable. The closest related designs are the single
multiplier of Shinde and Salankar [105] and the single MAC of Chau et al. [14] which targets fault tolerance.
Both use a multiplier stage while FPRaker is a SIMD MAC that processes Booth terms across multiple value
pairs eliminating the need for a multiplier stage and bares little similarity at the microarchitectural level with the
aforementioned designs.

3.4 Accelerators Targeting Floating-Point Ineffectual Computations

Feinberg et al. [32] proposes a memristive accelerator that supports double-precision floating-point in-situ matrix-
vector multiplication for scientific computing, e.g., krylov subspace methods. FPRaker, however, is a purely
digital DNN training accelerator supporting Bfloat16 precision and implemented using standard CMOS technol-
ogy. Performing floating-point addition on a memristor crossbar requires converting the floating-point values

CHAPTER 3. RELATED WORK 22

into aligned fixed-point values increasing sparsity by extra padding bits. The memristive accelerator removes
ineffectual computation on the crossbar-granularity by having different crossbar sizes per cluster and mapping
blocks of effectual computations in the multiplicand matrix to similar-size crossbars through a pre-processing
step. Inefficiently-mapped blocks are instead handled by the local processor. FPRaker, however, performs
regular floating-point addition and does not require fixed-point conversion. FPRaker removes more ineffectual
computations by skipping zero and out-of-bound terms per value through its term-serial processing.

3.5 Summary

This chapter first presented an overview on the software techniques to accelerate DNN training. Then, it discussed
related work on inference accelerators based on fixed-point bit-serial MAC units. Further, it presented an overview
on the floating-point fused multiply-accumulate operation and previous work on floating-point bit-serial MAC units.
Finally, it reviewed previous work on floating-point accelerators that targets removing the ineffectual computations
and and compares it to FPRaker.

Chapter 4

FPRaker: DNN Training Accelerator

This chapter presents FPRaker, a hardware accelerator for training DNNs that exploits bit-sparsity to boost the
training performance and energy-efficiency. Section 4.1 shows the inherent bit-sparsity in traces collected during
training which motivates FPRaker and shows its potential performance for each computation phase during training.
Section 4.2 presents the baseline accelerator used in this thesis. Section 4.3 discusses the approach of FPRaker to
exploit bit-sparsity by breaking down and serializing the multiplication operation. Section 4.4 presents the design of
FPRaker accelerator and related architectural optimizations to reduce the compute area and increase performance.
Section 4.5 discusses the spatial correlation between FP values during training, and proposes a new compression
method for encoding the exponents in FP values based on the base-delta compression technique to save the off-chip
memory transfers. Section 4.6 discusses the data organization and supply to the processing elements of both the
FPRaker and baseline accelerators to keep them busy. Section 4.7 discusses the evaluation of FPRaker against the
baseline accelerator. Finally, section 4.8 summarizes the work in this thesis and gives concluding remarks.

4.1 Ineffectual Work During Training

This section motivates FPRaker by measuring the work reduction that is ideally possible with two related
approaches: 1) by removing all MACs where at least one of the operands are zero (value sparsity, or simply
sparsity), and 2) by decomposing multiplications into a series of shift-and-add operations effectively processing
only the non-zero bits of the mantissa (bit-sparsity).

The bulk of work during training is due to three major operations per layer:

Z=I·W (4.1)
∂E
∂ I

=W T ·∂E
∂Z

(4.2)
∂E
∂W

=I·∂E
∂Z

(4.3)

For convolutional layers Eq. 4.1 describes the convolution of activations (I) and weights (W) that produces
the output activations (Z) during forward propagation. There the output Z passes through an activation function
before used as input for the next layer. Eq. 4.2 and 4.3 describe the calculation of the activation (∂E

∂ I) and weight
(∂E

∂W) gradients respectively in the backward propagation. Only the activation gradients are back-propagated across
layers. The weight gradients update the layer’s weights once per batch. For fully-connected layers the equations
describe several matrix-vector operations. For other layers they describe vector or matrix-vector operations. For
clarity, in the rest of this work we will refer to the gradients as G.

23

CHAPTER 4. FPRAKER: DNN TRAINING ACCELERATOR 24

Sq
ue

ez
eN

et
 1.

1

VGG16

Res
Net

50
-S

2

Res
Net

18
-Q

SN
LI

Im
ag

e2
Te

xt

Det
ec

tro
n2 NCF Ber

t0%

20%

40%

60%

80%

100%

Va
lu

e
Sp

ar
si

ty

Gradient Weight Activation

Figure 4.1: Value Sparsity in Tensors During Training.

Sq
ue

ez
eN

et
 1.

1

VGG16

Res
Net

50
-S

2

Res
Net

18
-Q

SN
LI

Im
ag

e2
Te

xt

Det
ec

tro
n2 NCF Ber

t0%

20%

40%

60%

80%

100%

Te
rm

 S
pa

rs
it

y

Gradient Weight Activation

Figure 4.2: Term Sparsity in Tensors During Training.

Figure 4.1, and 4.2 show the value, and term-sparsity respectively for each of the three tensors (W , I, and
G). Each value is weighted according to frequency of use. A value can be either a weight or an activation all
of which are represented as floating-point values. Sparsity in this case refers to the fraction of operations where
either the weight or the activation is zero. Such operations can be safely eliminated without affecting the final
outcome. We use the term term-sparsity to signify that for these the measurements the mantissa is first encoded
into signed powers of two using Canonical digit encoding which is a variation of Booth-encoding. For example,
the activation A=(1.0111110) is encoded using just three signed powers of two or terms, (+2−0,+2−1,−2−7).
Bit-sparsity refers to the fraction of bits that are zero. For our example value, bit sparsity is 2/8 as there are two
bits that are zero of the total 8 mantissa bits. If we were to convert the multiplication with this values into a series
of shift-and-add operations we would have to perform 6 of them instead of 8 if we were to process the bits directly.
Encoding the mantissa using signed power of two (terms) results into 3 terms yielding a term sparsity of 5/8. If we

CHAPTER 4. FPRAKER: DNN TRAINING ACCELERATOR 25

were to decompose the multiplication into a series of shift-and-add operations with signed powers of two, we would
need to perform just 3 of them. For simplicity, from this point on we will use term- and bit-sparsity interchangeably
while referring to term-sparsity as defined above.

The activations in the image classification networks exhibit sparsity exceeding 35% in all cases. This is
expected since these networks use the ReLU activation function which clips negative values to zero. However,
sparsity in the weights is typically low and only some of the classification models exhibit sparsity in their gradients.
For the remaining models, however, such as those for natural language processing, value sparsity is very low for all
three tensors. Regardless, since some models do exhibit sparsity it may be worthwhile to investigate whether it
is possible to exploit it during training. As explained in the introduction, this is a non-trivial task, as training is
different than inference and exhibits dynamic sparsity patterns on all tensors and different computation structures
during the backward pass.

Figure 4.2 shows that all three tensors exhibit high term-sparsity for all models regardless of the target
application. Given that term-sparsity is more prevalent than value sparsity, and exists in all models in the rest
of this work we investigate whether it is practically possible to exploit it during training. One such option is the
FPRaker processing element which we present next.

Figure 4.3 reports the ideal potential speedup due to reduction in the multiplication work through skipping the
zero terms in the serial input. We calculate the potential speedup over the baseline as:

Potential speedup =
#MAC operations

term sparsity×#MAC operations
(4.4)

Sq
ue

ez
eN

et
 1.

1

VGG16

Res
Net

50
-S

2

Res
Net

18
-Q

SN
LI

Im
ag

e2
Te

xt

Det
ec

tro
n2 NCF Ber

t0
2
4
6
8

10
12
14
16
18

Po
te

nt
ia

l S
pe

ed
up

 v
s

Ba
se

lin
e

5959
AxG GxW AxW

Figure 4.3: Performance improvement potential of exploiting term sparsity for the three training phases.

4.2 Bit-Parallel Baseline Accelerator

This section describes the baseline accelerator used in this thesis. We designed an efficient bit-parallel fused
multiply-accumulate (MAC) unit with conventional multipliers as the baseline processing element (PE), which is
shown in Figure 4.4. In a bit-parallel implementation all bits of a value are processed concurrently. The input and

CHAPTER 4. FPRAKER: DNN TRAINING ACCELERATOR 26

output operands of the PE are in Bfloat16. Training DNNs with Bfloat16 format is known to converge to the same
final accuracy as training with single precision (FP32) format and is widely adopted in industry, e.g., Google’s
TPU [60]. Each cycle, the PE multiplies 8 activation-weight pairs in parallel, reduces the resulting products using
an adder-tree to a partial sum, and then accumulates the partial sum into an accumulation register that stores
the partial output activation. The adder-tree amortizes the cost of reading-modifying-writing the partial output
activation for each of the input activation-weight pairs. Hence, the adder-tree-based PE is more energy-efficient
compared to a scalar MAC PE that performs a separate read-modify-write operation on the partial output activation
for each input pairs. We chose 8 MACs per PE as this proves to be a good compromise between data parallelism
and the need for extra computations that are needed when the relevant layer dimensions are not divisible by PE
MAC width (layer fragmentation). A designer may chose to revisit this design parameter.

The PE can be decomposed into three stages: 1) Multiply: this stage has 8 bit-parallel floating-point multipliers.
The constituent multipliers are both area and latency efficient, and are taken from the DesignWare IP library
developed by Synopsys. Each multiplier outputs the product exponent (Pe) and significand (Pm). 2) Align: this
stage aligns the product significands (Pm) with the current significand value stored in the accumulation register
(ACC) according to their corresponding exponent values (Pe). To do so, a comparator-tree (MAX block) determines
the maximum (emax) among the products’ exponents (Pe) and the current accumulator exponent (eACC). Figure 4.5
shows the MAX block. Each exponent product is then subtracted from the maximum exponent (emax) to get the
amount of shift (δe) for its corresponding significand (Pm). The MAX block outputs the “acc shift” signal to align
the accumulator register in case one of the products’ exponents is larger than the current accumulator exponent.
3) Accumulate: this stage accumulates the result from the adder-tree with the partial output activation stored in
the accumulation register. After each accumulation, the accumulation register value gets normalized and rounded
using the rounding-to-nearest-even (RNE) rounding scheme.

A0

B0

A7

B7

…
.

XFP

XFP >>
>>

MAX

+
>>

+

A
C
C

A
C
C

N
o
rm

al
iz
e

e
A
C
C

+
emax

99
99

22

Multiply Align Accumulate

emax

acc_shifteACC

δe0

δe7

Pe0

Pe7

Pm7

Pm0

-

- …
.

99

99

99

1717

1717

55

55

2020

2020

2323

1717

R
N
E 1717

1717 1717 1111

44

Figure 4.4: Baseline Processing Element

CHAPTER 4. FPRAKER: DNN TRAINING ACCELERATOR 27

cmp cmp cmp cmp

cmp cmp

cmp

cmp

Pe0

eacc

emaxacc_shift

Pe1Pe2Pe3Pe4Pe5Pe6Pe7

Figure 4.5: MAX block: a comparator-tree

To exploit data reuse spatially, the baseline is configured to have scaled-up GPU Tensor-Core-like tiles as
shown in Figure 4.6, where 64 PEs are organized in a 8× 8 grid and each PE performs 8 MAC operations in
parallel. Smaller grid sizes, e.g. 4×4, can reduce the synchronization overhead among PEs of the same column,
however, on the expense of reducing the spatial data reuse, and vice versa. The 8×8 grid was chosen so that a tile
can perform full 8×8 vector-matrix multiplication.

Activation Memory

W
ei

gh
t M

em
or

y

64

64

PE0,0

PE7,0

PE0,7

PE7,7

...

...

...

Figure 4.6: Baseline tile configuration

4.3 Exposing Ineffectual Work

FPRaker’s goal is to take advantage of bit-sparsity in one of the operands used in the three operations performed
during training (equations 4.1 through 4.3) all of which are composed of many MAC operations. We first explain
how decomposing MAC operations into a series of shift-and-add operations can expose ineffectual work, providing
us with the opportunity to save energy and time.

To expose ineffectual work during MAC operations we can decompose the operation into a series of “shift
and add” operations, Let us first look at the multiplication. Let A = 2Ae ×Am and B = 2Be ×Bm be two values in

CHAPTER 4. FPRAKER: DNN TRAINING ACCELERATOR 28

floating point, both represented as an exponent (Ae and Be) and a significand (Am and Bm) which is normalized and
includes the implied “1.”. Conventional floating point units perform this multiplication in a single step (sign bits
are XORed):

A×B = 2Ae+Be × (Am×Bm) = (Am×Bm)� (Ae + Be) (4.5)

By decomposing Am into a series p of signed powers of two Ap
m where A = ∑p Ap

m and Ap
m = ±2i, we can

instead perform the multiplication as follows:

A×B = (∑
p

Ap
m×Bm)� (Ae + Be) = ∑

p
Bm� (i +Ae +Be) (4.6)

For example, if Am=1.0000001b, Ae=10b, Bm=1.1010011b and Be=11b then we can perform A×B as two
shift-and-add operations of Bm�(10b+11b−0) and Bm�(10b+11b−111b). A conventional multiplier would
process all bits of Am despite performing ineffectual work for the six bits that are zero.

However, this decomposition exposes further ineffectual work that conventional units perform as a result of the
high dynamic range of values that floating point seeks to represent. Informally, some of the work done during the
multiplication will result in values that will be out-of-bounds given the accumulator value. To understand why this
is the case let us now consider not only the multiplication but also the accumulation. Let’s assume that the product
A×B will be accumulated into a running sum S and Se is much larger than Ae +Be. It will not be possible to
represent the sum S+A×B given the limited precision of the mantissa. In other cases, some of the “shift-and-add”
operations would be guaranteed to fall outside the mantissa even when we consider the increased mantissa length
used to perform rounding, i.e., partial swamping. A conventional pipelined MAC unit can at best power-gate the
multiplier and accumulator after comparing the exponents and only when the whole multiplication result falls out
of range. However, it cannot use this opportunity to reduce cycle count. By decomposing the multiplication into
several simpler operations, we can terminate the operation in a single cycle given that we process the bits from
the most to the least significant, and thus boost performance by initiating another MAC earlier. The same is true
when processing multiple A×B products in parallel in an adder-tree processing element. A conventional adder-tree
based MAC unit can potentially power-gate the multiplier and the adder tree branches corresponding to products
that will be out-of-bounds. The cycle will still be consumed. As we explain in the next section, a shift-and-add
based unit will be able to terminate such products in a single cycle and advance others in their place.

4.4 Architecture

Section 4.4.1 shows the implementation of the FPRaker PE. Section 4.4.2 discusses a simplified execution example
of the FPRaker processing element (PE). Section 4.4.3 explains how FPRaker time-multiplexes a single exponent
block among multiple PEs, a key optimization for area- and energy-efficiency. Section 4.4.4 explains how multiple
processing elements can be organized into a larger tile.

4.4.1 FPRaker Processing Element

In this section, we describe the implementation of the FPRaker PE. First, we discuss an initial baseline imple-
mentation of the FPRaker PE. Afterwards, we discuss limiting the accumulator bit-width through chunk-based
accumulation to further reduce the area of the PE. Then, we discuss an optimization which takes advantage of the
narrow value distribution during training to reduce the area of the shifting and adder-tree stages. This optimization
limits the size of the shifters by decomposing shifting into two stages with a common shifter. Finally, this section

CHAPTER 4. FPRAKER: DNN TRAINING ACCELERATOR 29

proposes a simple modification to the FPRaker PE to allow it to skip out-of-bounds bits during accumulation to
further boost performance and energy-efficiency.

+

+

MAX

-

-

Ae0

Be0

Ae7

Be7

emax

As0

Bs0

As7

Bs7

Ps0

Ps7

+

…
.

…
.

…
.

eacc acc_shift

1) Exponent 2) Shift&Reduce 3) Accumulation

+

+

t0

n
e
g

n
e
g

>
>

>
>

…
.

Bm0

Bm7

+

N
o
rm

al
iz
e

>
>

+
emax

eacc

t7

δe0

δe7

K0

K7

ABe0

ABe7

88

88

88

88

11

11

77

77

99
991414

88

88

44

44

33

33

99

1717

1717

44

44

1414

22

1111

A
C

C
A

C
C

44

1414

1717

Figure 4.7: FPRaker PE: Baseline Design.

4.4.1.1 Baseline Design

The FPRaker PE performs the multiplication of 8 Bfloat16 (A,B) value pairs, concurrently accumulating the result
into an output accumulator. The Bfloat16 format consists of a sign bit, followed by a biased 8b exponent, and a
normalized 7b significand (mantissa). Figure 4.7 shows a baseline of the FPRaker PE design which performs the
computation in 3 blocks: exponent, reduction, and accumulation. We describe an implementation where the
3 blocks are performed in a single cycle. We will build upon this design and modify it to construct a more area
efficient tile comprising several of these PEs. Recall that the significands of each of the A operands are converted
on-the-fly into a series of terms (signed powers of two) using canonical encoding. This encoding occurs just before
the input to the PE. All values stay in bfloat16 while in memory. The PE will process the A values term-serially. The
accumulator has an extended 13b significand where 1b is used for the leading 1 (hidden), 9b are used for extended
precision following the chunk-based accumulation scheme as suggested by Sakr et al., [99] with a chunk-size
of 64 which guarantees a training conversion accuracy within 1% of the final model accuracy trained with FP32
format on ImageNet dataset, plus 3b for rounding to nearest even. It has 3 additional integer bits following the
hidden bit so that it can fit the worst case carry out from accumulating 8 products. In total, the accumulator has
16b, 4 integer, and 12 fractional.

The PE accepts 8 8-bit A exponents Ae0, ...,Ae7, their corresponding 8 3-bit significand terms t0, ..., t7 (after
canonical encoding) and signs bits As0, ...,As7, along with 8 8-bit B exponents Be0, ...,Be7, their significands
Bm0, ...,Bm7 (as-is) and their sign bits Bs0, ...,Bs7 as shown in Figure 4.7.

Block 1 — Exponent: Processing a new set of 8 value pairs starts first at the exponent block. This block adds
the A and B exponents in pairs to produce the exponents ABei for the corresponding products. A comparator tree
takes these product exponents and the exponent of the accumulator and selects the maximum exponent emax. The
maximum exponent is used to align all products so that they can be summed correctly. To determine the proper
alignment per product the block subtracts all product exponents from emax calculating the alignment offsets δei.
The maximum exponent is used to also discard terms that will fall out-of-bounds when accumulated. The PE will

CHAPTER 4. FPRAKER: DNN TRAINING ACCELERATOR 30

skip any terms who fall outside the emax−12 range, given that the fractional part of the accumulator is 12b. The
block is invoked only once per new set of value pairs, before any terms are generated, and regardless of how many
terms end up being generated. Accordingly, the minimum effective number of cycles for processing the 8 MACs
will be 1 cycle regardless of value (the blocks can be pipelined, and since there are no data dependencies, the
pipeline can be kept full). In case one of the resulting products has an exponent larger than the current accumulator
exponent, the accumulator will be shifted accordingly prior to accumulation (acc shift signal).

Block 2 — Shift&Reduce: Since multiplication with a term amounts to shifting, this block calculates the
number of bits by which each B significand will have to be shifted prior to accumulation. These are the 4-bit terms
K0, ...,K7. To calculate Ki we add the product exponent deltas (δei) to the corresponding A term ti. The A sign bits
are XORed with their corresponding B sign bits to determine the signs of the products Ps0, ...,Ps7.

The B significands are complemented according to their corresponding product signs, and then shifted using
the offsets K0, ...,K7. The PE uses a shifter per B significand to implement the multiplication. In contrast, a
conventional floating point unit would require shifters at the output of the multiplier. Thus FPRaker PE effectively
completely eliminates the cost of the multipliers.

Bits that are shifted out of the accumulator range from each B operand are rounded using round-to-nearest-
even (RNE) approach, which is the default rounding scheme for floating-point addition. An adder tree reduces the
8 B operands into a single partial sum as shown in Figure 4.7(2).

Block 3 — Accumulation: The resulting partial sum from step 2 is added to the correctly aligned value of the
accumulator register. In each accumulation step, the accumulator register is normalized and rounded using the
rounding-to-nearest-even (RNE) scheme. The normalization block updates the accumulator exponent as shown in
Figure 4.7(3). When the accumulator value is read out, it is converted to bfloat16 by extracting only 7b for the
significand.

In the worst case two Ki offsets may differ by up to 12 since our accumulator has 12 fractional bits. This means
that the baseline PE requires relatively large shifters and an accumulator tree that accepts wide inputs. Specifically,
the PE requires shifters that can shift up to 12 positions a value that is 8b (7b significant + hidden bit). Had this
been integer arithmetic we would need to accumulate 12+8 = 20b wide. However, since this is a floating point
unit we will be accumulating only the 14 most significant bits (1b hidden, 12b fractional and the sign). Any bits
falling below this range will be included in the sticky bit which is the least significant bit of each input operand.

4.4.1.2 2-Stage Shifting

It is possible to greatly reduce the area cost of the PE by taking advantage of the expected distribution of the
exponents. Figure 4.8 shows, for example, the distribution of exponents for a layer of ResNet34. The y-axis reports
the frequency each x-axis value appears. For example, a y-axis value of 0.4 for the x-axis value 0 means that the
40% of the exponent values are zero. The vast majority of the exponents of the inputs, the weights and the output
gradients lie within a narrow range. This suggests that in the common case the exponent deltas will be relatively
small. In addition, the MSBs of the activations are guaranteed to be one (given denormals are not supported [49]).
This indicates that very often the K0, ...,K7 offsets would lie within a narrow range. We take advantage of this
behavior to reduce the PE area. In our preferred configuration we limit the maximum difference in among the Ki

offsets that can be handled in a single cycle to be up to 3. As a result, the shifters need to support shifting by up to
3b and the adder now need to process 12b inputs (1b hidden, 7b+3b significant, and the sign bit).

CHAPTER 4. FPRAKER: DNN TRAINING ACCELERATOR 31

0.0

0.2

0.4
Epoch 0

-64 -32 0 32
Exponent Range

0.0

0.2

0.4

 E
xp

on
en

t
D

is
tr

ib
ut

io
n

Epoch 89

ResNet34 layer Conv2d_8
Activation Weight Gradient

Figure 4.8: Normalized exponent distribution of layer Conv2d 8 in epochs 0 and 89 of training ResNet34 on
ImageNet. The figure shows only the utilized part of the full range [-127:128] of an 8b exponent.

2) Shift&Reduce 3) Accumulation

t0

n
e

gBm7

+

emax e
ac

c
77

99

88

22

22

R
ed

u
ce

d
 S

h
if

ti
n

g
C

tr
l

δe0

t7

δe7

n
e

gBm0 77 88

>
>

>
>

22

+

1212

1212

sw
ap

>
>

+

A
C

C

N
o

rm
al

iz
e

1111

Δ0

Δ7

…

base_shift

1515

1515

…

validΔ0

validΔ7

1515

1515 1515

99

OB7

OB0

…

Figure 4.9: FPRaker PE: Modified Design.

Figure 4.9 shows the modified FPRaker PE where the shifters in the “Shift&Reduce” stage in Figure 4.7 are
limited to shift up to 3b. A shared single shifter (base shi f t) after the adder tree serves a dual purpose: First, it
aligns the adder tree’s output and the accumulator properly. Second, it allows the PE to skip over longer than 3b
distances in the input term stream. This is useful, when the next set of terms are at a distance longer than 3b vs. the
current ones. Each PE has a control unit (Reduced Shi f ting Ctrl) to generate the modified terms ∆i and a valid∆i

signal indicating whether the lane can process its term at the current cycle. The exponent block is not shown for
simplicity since it is not affected by the 2-stage shifting optimization. The value of the common shifting stage is

CHAPTER 4. FPRAKER: DNN TRAINING ACCELERATOR 32

calculated as the minimum of the original shifting stage (k0, ...,k7) as shown in Figure 4.10 and the amounts of first
stage shifting (∆0, ...,∆7) are calculated as ∆i = ki−base shi f t.

+

t0δe0

+

t7δe7

…

MIN

- -
Δ7 Δ0

b
as

e
_s

h
if

t

k0k7

va
li

d Δ
0

<= 3

va
li

d Δ
7

1

<= 3

1

1
>acc_width

OB7

1
>acc_width

OB7

Figure 4.10: FPRaker PE control unit (Reduced Shifting Ctrl)

4.4.1.3 Skipping out-of-bounds terms

Skipping out-of-bounds terms turns out to be surprisingly inexpensive. The control unit uses a comparator per
lane to check if its current K term lies within a threshold with the value of the accumulator precision (comparators
are optimized by the synthesis tool for comparing with a constant) as shown in Figure 4.10 and feeds back an
OBi signal to its corresponding term encoder indicating that any subsequent term coming from the same input
pair is guaranteed to be ineffectual (out-of-bound) given the current eacc value. Hence, FPRaker can boost its
performance and energy-efficiency by skipping the processing of the subsequent out-of-bound terms. The OBi

signals of a certain lane across the PEs of the same tile column are synchronized together. The threshold is currently
set according to [99] which ensures models converge within 0.5% of the FP32 training accuracy on the ImageNet
dataset. However, the threshold can be controlled effectively implementing a dynamic bit-width accumulator that
can boost performance by increasing the number of skipped ”out-of-bounds” bits, an option we do not investigate
further and keep as a potential direction for future work.

4.4.2 Simplified Example

Figure 4.11 shows an example of a simplified PE processing 2 activation-weight pairs each has 5b mantissa
including the hidden-bit: A0=22×1.1101,B0=23×1.0011 and A1=21×1.1011,B1=21×1.1010.

CHAPTER 4. FPRAKER: DNN TRAINING ACCELERATOR 33

+Bm0

Bm1

ABe0=2+3=5, ABe1=1+1=2, eacc=0
→emax=5, eacc=5
→k0=5-(5-0)=0, k1=5-(2-0)=3
→base=0, Δ0=0, Δ1=3

A0=2x1.1101
A1=2x1.1011

2

1

Δ0

cycle 1

...

>
>

>
>

Δ1

>
>

base

+Bm0

Bm1

A0=2x1.1101
A1=2x1.1011

2

1

Δ0

cycle 2

...

>
>

>
>

Δ1

>
>

base

→eacc=5, emax=5
→k0=5-(5-1)=1, k1=5-(2-1)=4
→base=1, Δ0=0, Δ1=3

+Bm0

Bm1

A0=2x1.1101
A1=2x1.1011

2

1

Δ0

cycle 3

...

>
>

>
>

Δ1

>
>

base

→eacc=5, emax=5
→k0=5-(5-2)=2, k1=5-(2-3)=6
→base=2, Δ0=0, Δ1=idle

+Bm0

Bm1

A0=2x1.1101
A1=2x1.1011

2

1

Δ0

cycle 4

...

>
>

>
>

Δ1
>
>

base

→eacc=5, emax=5
→k0=5-(5-4)=4, k1=5-(2-3)=6
→base=4, Δ0=0, Δ1=2

+Bm0

Bm1

A0=2x1.1101
A1=2x1.1011

2

1

Δ0

cycle 5

...

>
>

>
>

Δ1

>
>

base

→eacc=6 (after acc. normalization), emax=6
→k1=6-(2-4)=8
→base=8, Δ0=idle, Δ1=0

Figure 4.11: FPRaker Processing Example

On cycle 1, the exponent block computes the products’ exponents ABe0 and ABe1 (used once per new set of
input pairs). Assuming a zero accumulator for simplicity, the MAX block computes emax=max(ABe0,ABe1,eacc)=5.
The accumulator exponent is then set to eacc=emax. The absolute terms are computed as ki=eacc−(ABei−ti), where
ti are the position of non-zero terms generated by the term encoders shared across the PEs of the same tile column.
To limit the PE’s shifters range up to 3b, the shared shifter after the adder tree is set to base=min(k0,k1). The
value of the limited shifters are set to ∆i=ki−base. For cycles 1 & 2, since both ∆0 and ∆1 are within 3, both
lanes can operate simultaneously. On cycle 3, the difference between k0 and k1 is more than 3, which means both
terms cannot be processed simultaneously. Hence, lane 1 stalls while lane 0 operates with base=k0 and ∆0=0. On
cycle 4, lane 1 has its term from the previous cycle while lane 0 has a new term. Since the difference between
the two terms is within 3, both lanes can operate simultaneously. On cycle 5, lane 0 is idle since it finished its
terms while lane 1 processes its final term. To illustrate skipping out-of-bound terms, assume the total precision
of the accumulator mantissa is 6b. On cycle 4, lane 1 feeds back a signal to its term encoder indicating that any
subsequent term coming from the same input pair is guaranteed to be ineffectual (out-of-bound) term. Hence, lane
1 can skip processing its last term and the PE saves one processing cycle by finishing at cycle 4.

In this example, the FPRaker PE has a throughput of 2 1b×5b products per cycle. However, an equivalent
baseline PE with input 2 lanes can perform 2 5b×5b products per cycle. Assuming that we can fit a tile of 5
FPRaker PEs within the area of a single baseline PE, FPRaker will have a throughput of 5 2×1b×5b products
equivalent to the baseline. With the presence of a large number of zero and out-of-bound terms, FPRaker can have
a performance speedup over the baseline.

4.4.3 Sharing the Exponent Block

In the common case, processing a group of A values will require multiple cycles since some of them will be
converted into multiple terms. During that time the inputs to the exponent block will not change. To further reduce
area we can take advantage of this expected behavior and share the exponent block across multiple PEs. The
decision of how many PEs to share an exponent block over can be based on the expected bit-sparsity. The lower
the bit-sparsity the higher the processing time per PE and the less often it will need a new set of exponents. Hence,

CHAPTER 4. FPRAKER: DNN TRAINING ACCELERATOR 34

more PEs can share the exponent block. For the studied models sharing one exponent block per two PEs proved
best. Figure 4.12 shows the modified design. The unit as a whole accepts as input one set of 8 A inputs and two sets
of B inputs, B and B′. The exponent block can process one of (A,B) or (A,B′) at a time. During the cycle when it
processes (A,B) the multiplexer for PE#1 passes on the emax and exponent deltas directly to the PE. Simultaneously,
these values will be latched into the registers in front of the PE so that they remain constant while the PE processes
all terms of input A. When the exponent block processes (A,B′) the aforementioned process proceeds with PE#2.
With this arrangement both PEs must finish processing all A terms before they can proceed to process another set
of A values. Since the exponent block is shared, each set of 8 A values will take at least 2 cycles to be processed
(even if it contains zero terms).

8

Exponent

PE #1

PE #2

Em
ax

/δ
e

0
-7

B’eBe Ae

Bm Bs

8x7+1

8x8 8x8 8x8

8x4

t

B’m B’s
8x7+1 8x1

As

en
co

d
e

Am As

8x7+1

Em
ax

/δ
e

0
-7

5/8x5

Figure 4.12: Reducing area by sharing the exponent block between two PEs.

4.4.4 Tile Organization

By utilizing per PE buffers it is possible to exploit data reuse temporally. To exploit data reuse spatially we can
arrange several PEs into a tile. Figure 4.13 shows an example of a 2×2 tile of PEs and each PE performs 8 MAC
operations in parallel. The PEs along the same column share the same input activations, while the PEs along the
same row share their weight inputs. Each column has a shared booth encoder which feeds the effectual terms to the
constituent PEs. Each pair of PEs per column shares an exponent block as previously described. The B and B′

inputs are shared across PEs in the same row. For example, during the forward pass we can have different filters
being processed by each row and different windows processed across the columns. Since the B and B′ inputs are
shared all columns would have to wait for the column with the most Ai terms to finish before advancing to the next
set of B and B′ inputs. To reduce these stalls the tile introduces per B and B′ buffers. By having N such buffers per
PE allows the columns be at most N sets of values ahead.

CHAPTER 4. FPRAKER: DNN TRAINING ACCELERATOR 35

ex
p

o
n

en
t

PE #1,1

PE #1,2

B
8x16b8x16b8x16b

8x48x4

t

8x18x1

A0s

e
n

co
d

e

B’
8x16b8x16b8x16b

A1m+s

A1m+s

A1e

8x16b8x16b8x16b

ex
p

o
n

en
t

PE #2,1

PE #2,2

8x48x4

t

8x18x1

A2s

e
n

co
d

e

A2m+s

A2m+s

A5e

8x16b8x16b8x16b

Column 1 Column 2

Figure 4.13: A 2×2 PE FPRaker Tile.

4.5 Exponent Base-Delta Compression

Motivated by the narrow value distribution shown in Figure 4.8, we studied the spatial correlation of values during
training. We found that consecutive values across all dimenions (channel, H, or W) have similar values. This is true
for the activations, the weights and the output gradients. Similar values in floating-point have similar exponents, a
property which we can exploit through a base-delta compression scheme [90]. In our experiments, we block values
channel-wise (we present evidence, however, that the value corellation persists along the H dimension as well) into
groups of 32 values each, where the exponent of the first value in the group is the base (B) and we compute the
delta exponent (∆E) for the rest of the values in the group relative to it. The precision (P) of the delta exponents is
dynamically determined per group and is set to the maximum precision of the resulting delta exponents per group
similar to the approach of Delmas et al. [67]. The delta exponent precision (3b) and the base exponent are attached
to the header of each group as metadata. Figure 4.14 shows the compression and decompression units.

E0 M0 E1 M1 ... E31 M31

ΔE0 M0 ΔE1 M1 ... M31

E0 M0 E1 M1 ... E31 M31

BP

Base
exponent

Deltas
Precision

- - -

ΔE31

3b 1B

+ + +

C
o

m
p

re
ss

io
n

D
e

co
m

p
re

ss
io

n

M
e

ta
d

a
ta

Compressed
group

1B 1B

1Bδb

Figure 4.14: Exponent base-delta compression/decompression for a group of 32 values

CHAPTER 4. FPRAKER: DNN TRAINING ACCELERATOR 36

Figure 4.15 shows the normalized exponent footprint after the base-delta compression. Our technique is effective
for both channel-wise and spatial (H dimension shown) dataflows. On average, the normalized exponent footprint
is 31.9%, 40.1% and 42.2% for the activations, weights and gradients, respectively. We use this compression
scheme to reduce the off-chip memory bandwidth. Values are compressed at the output of each layer and before
writing them off-chip, and they are decompressed when they are read back on-chip.

Image2Text

ResNet50-S2 SNLI

SqueezeNet 1.1
VGG16

ResNet18-Q NCF Bert

Detectron2
0%

20%

40%

60%

80%

100%

N
or

m
al

iz
ed

 E
xp

on
en

t
Fo

ot
pr

in
t Gradient Weight Activation

Figure 4.15: Memory savings due to exponent base-delta compression. Bars and markers represent compression
channel-wise and spatial-wise, respectively.

4.6 Data Supply

Focusing solely on computation is insufficient. Data transfers account for a significant portion and often dominate
energy consumption in deep learning. Accordingly, it is essential to consider what the memory hierarchy needs to
do to keep the execution units busy. A challenge with training is that while it processes three arrays I, W and G

the order in which their elements are grouped differs across the three major computations (Eq. 4.1 through 4.3).
However it is possible to rearrange the arrays as they are read from off-chip. For this purpose we store the arrays in
memory using a container of “square” of 32×32 bfloat16 values. This a size that matches well the typical row
sizes of DDR4 memories and allows us to achieve high bandwidth when reading values from off-chip. A container
includes values from coordinates (c,r,k) (channel, row, column) to (c+31,r,k+31) where c and k are divisible by
32 (padding is used as necessary). Containers are stored in channel, column, row order. When read from off-chip
memory, the container values are stored in the exact same order in the multi-banked on-chip buffers. The tiles can
then access data directly reading 8 bfloat16 values per access. The weights and the activation gradients however
need to be processed in different order depending on the operation performed. Effectively, the respective arrays
must be accessed in the transpose order during one of the operations. For this purpose we incorporate transposer
units on-chip. A transposer reads in 8 blocks of 8 bfloat16 values from the on-chip memories. The transposer then
can provide 8 blocks of 8 values each composed of a single value from each of the 8 original blocks read from
memory effectively transposing the tensor. Collectively these blocks form an 8×8 block of values. The transposer
can read out 8 blocks of 8 values each and send those to the processing units. Each of these blocks however is read
out as a column from its internal buffer. This effectively transposes the 8×8 value group.

CHAPTER 4. FPRAKER: DNN TRAINING ACCELERATOR 37

4.7 Evaluation

This section evaluates FPRaker against an equivalent baseline architecture that uses bit-parallel floating-point
MAC units. First, we present the experimental methodology used in this thesis. Next, we discuss the post-layout
area results and accordingly configure both FPRaker and baseline accelerators for ISO-compute-area comparison.
We then show the performance and energy-efficiency of FPRaker over the baseline, followed by an extensive
performance analysis study. Afterwards, we present an accuracy study indicating that FPRaker processing does not
affect final training accuracy. We conclude this section by showing the performance of FPRaker with a technique
that profiles the accumulation bit-width per layer during training.

4.7.1 Methodology

A custom trace-based cycle-accurate simulator was developed in C++ to model the execution time of FPRaker and
of the baseline architecture. The simulator is trace-driven using the traces of the forward and backward passes
collected in each training epoch while training the models on a NVIDIA RTX 2080 Ti GPU. Besides modeling
timing behavior of the simulator also models value transfers and computation in time faithfully and checks the
produced values for correctness against the golden values. The simulator was validated with microbenchmarking
where for each computation phase of training (A×W , A×G, G×W), we validate the output of the simulator with
its corresponding collected output traces. For area and power analysis, both FPRaker and the baseline designs were
implemented in Verilog and synthesized using Synopsys’ Design Compiler [66] for a 600 MHz clock frequency
with a 65nm TSMC technology (due to licensing restrictions we cannot get access to a better technology). We use
Cadence Innovus [12] for layout generation. We use Intel’s PSG ModelSim [55] to generate data-driven activity
factors we feed to Innovus to estimate the power. The baseline MAC unit was optimized for area, energy and
latency [33]. We use an efficient bit-parallel fused MAC unit as the baseline PE. The constituent multipliers are
both area and latency efficient, and are taken from the DesignWare IP library developed by Synopsys. Further, we
optimize the baseline units for deep learning training by reducing the precision of its I/O operands to bfloat16 and
accumulating in reduced precision with chunk-based accumulation similar to FPRaker units. The area and energy
consumption of the on-chip SRAM Global Buffer (GB) is divided into activation, weight, and gradient memories
that were modeled using CACTI [50]. The Global Buffer has an odd number of banks to reduce bank conflicts
for layers with a stride greater than one. To estimate the latency and energy consumption of the off-chip DRAM
memory we use the model provided by Micron [81]. Following an iso-compute-area comparison, since the area of
the FPRaker tile is 4.5× smaller than the baseline, we configured both FPRaker and the baseline are shown in
Table 4.1.

Table 4.1: Baseline and FPRaker configurations.

FPRaker Baseline

Tile Configuration 8×8 8×8

Tiles 36 8

Total PEs 2304 512

Multipliers/PE 8 8 BFLOAT16

MACs/cycle - 4096

Scratchpads 2KB each

Global Buffer 4MB × 9 banks

Off-chip DRAM Memory 16GB 4-channel LPDDR4-3200

To evaluate our accelerator, we collected traces for one random mini-batch during the forward and backward

CHAPTER 4. FPRAKER: DNN TRAINING ACCELERATOR 38

pass in each epoch of training. All models were trained long enough to attain the maximum top-1 accuracy as
reported by the original authors. To collect the traces, we trained each model on a NVIDIA RTX 2080 Ti GPU
and stored all of the inputs and outputs for each layer using Pytorch Forward and Backward hooks. For BERT we
traced BERT-base and the fine-tuning training for a GLUE task. The simulator uses the traces to model execution
time and collects activity statistics so that energy can be modeled.

4.7.1.1 Comparison under ISO-Compute-Area Constraints

Since FPRaker processes one of the inputs term-serially, a single FPRaker processing engine can never outperform
a conventional PE that processes the same number of inputs. FPRaker relies on parallelism to extract more
performance. This is only possible if we can afford to use more FPRaker units than conventional units.

One approach is to use an iso-compute area constraint. This is constraint that has been popular when comparing
different accelerators [87, 102, 104]. With the iso-compute-area comparison method, we constrain the proposed
accelerator to use the same on-chip compute area as the baseline accelerator. Particularly, given a certain silicon
area budget for the compute logic, we study the performance and energy-efficiency of our proposed accelerator
compared to the baseline accelerator. This method is widely used in the computer architecture community due
to its simplicity. Accordingly, we first measure the area of our units so that we can then determine appropriate
configurations under the iso-compute-area constraint.

In our case, we are interested to determine how many FPRaker tiles we can fit in the same area for a baseline
tile. For this we take into account only the compute cores as associated logic and not the scratchpads.

4.7.2 Area

We configure the FPRaker tile similar to the baseline as discussed previously in Section 4.2. Post layout, and taking
into account only the compute area, an FPRaker tile occupies 22% the area vs. the baseline tile. Table 4.2 reports
the corresponding area and power per tile. Accordingly, to perform an iso-compute-area comparison, we configure
the baseline accelerator to have 8 tiles and FPRaker with 36 tiles as shown previously in Table 4.1 The area for
the on-chip SRAM global buffer is 344mm2, 93.6mm2, and 334mm2 for the activations, weights, and gradients,
respectively. Both FPRaker and the baseline have the same on-chip memory capacity.

Table 4.2: Breakdown of the area and power consumption per tile of FPRaker vs. Baseline.

Area [µm2]

PE Array Term Encoders Total Normalized
FPRaker 304,118 12,950 317,068 0.22×
Baseline 1,421,579 N/A 1,421,579 1×

Power [mW]

FPRaker 104 5.5 109.5 0.23×
Baseline 475 N/A 475 1×

Energy Efficiency Normalized to Baseline

FPRaker 1.4×

CHAPTER 4. FPRAKER: DNN TRAINING ACCELERATOR 39

Sq
ue

ez
eN

et
 1.

1

VGG16

Res
Net

50
-S

2

Res
Net

18
-Q

Im
ag

e2
Te

xt
SN

LI

Det
ec

tro
n2 NCF Ber

t

Geo
mea

n
0.0

0.5

1.0

1.5

2.0

2.5

FP
Ra

ke
r

vs
 B

as
el

in
e

Perf (BDC + Zero Terms)
Perf (Zero Terms)

Core Energy Efficiency
Total Perf (BDC + Zero/OB Terms)

Figure 4.16: ISO-compute-area performance and energy-efficiency comparison between FPRaker and the baseline.

4.7.3 Execution Time

Figure 4.16 shows the performance breakdown of FPRaker due to the base-delta compression (BDC), and skipping
zero and out-of-bound (OB) terms relative to the baseline. On average, FPRaker outperforms the baseline by 1.5×
(skipping zero terms: 9%, BDC: 5.8%, skipping out-of-bound terms: 35.2%). From the studied convolution-based
models, ResNet18-Q benefits the most from FPRaker where the performance improves by 2.04× over the baseline.
Training for this network incorporates PACT quantization and as a result most of the activations and weights
throughout the training process can fit in 4b or less. This translates into high term sparsity which FPRaker exploits.
This result demonstrates that FPRaker can deliver benefits with specialized quantization methods without requiring
that the hardware be also specialized for this purpose.

SNLI, NCF, and Bert are dominated by fully connected layers. While in fully-connected layers there is no
weight reuse among different output activations, training can take advantage of batching to maximize weight reuse
across multiple inputs (e.g., words) of the same input sentence which results in higher utilization of the tile PEs.
Speedups follow bit-sparsity. For example, FPRaker achieves a speedup of 1.8× over the baseline for SNLI due its
high bit-sparsity.

4.7.4 Energy Efficiency

Figure 4.16 shows the total energy efficiency of FPRaker over the baseline architecture for each of the studied
models. On average, FPRaker is 1.4× more energy efficient compared to the baseline considering only the
compute logic and 1.36× more energy efficient when on- and off-chip memories are taken into account. The
energy-efficiency improvements follow closely the performance benefits. The benefits are higher at around 1.7×
for SNLI and Detectron2. The quantization in ResNet18-Q boosts the compute logic energy efficiency to as high as
1.97×. Figure 4.17 shows the energy consumed by FPRaker normalized to the baseline as a breakdown across
three main components: compute logic, off-chip and on-chip data transfers. Figure 4.17 further breaks down

CHAPTER 4. FPRAKER: DNN TRAINING ACCELERATOR 40

the FPRaker core into “Compute” (PE stages 1 and 2), “Control” (PE control units and shared term encoders),
and “Accumulation” (PE stage 3). FPRaker along with the exponent base-delta compression reduce the energy
consumption of the compute logic and off-chip memory significantly.

FP
Ra

ke
r

Ba
se

lin
e

FP
Ra

ke
r

Ba
se

lin
e

FP
Ra

ke
r

Ba
se

lin
e

FP
Ra

ke
r

Ba
se

lin
e

FP
Ra

ke
r

Ba
se

lin
e

FP
Ra

ke
r

Ba
se

lin
e

FP
Ra

ke
r

Ba
se

lin
e

FP
Ra

ke
r

Ba
se

lin
e

FP
Ra

ke
r

Ba
se

lin
e

FP
Ra

ke
r

Ba
se

lin
e0%

20%

40%

60%

80%

100%

En
er

gy
 E

ff
ic

ie
nc

y
Br

ea
kd

ow
n

SqueezeNet 1.1
VGG16

ResNet50-S2

ResNet18-Q

Image2Text

SNLI
Detectro

n2

NCF BertGeoMean

On-chip Off-chip Baseline Core

FPRaker Core
Accumulation
Control
Compute

Figure 4.17: Overall Energy Efficiency of FPRaker vs Baseline.

4.7.5 Performance Analysis

We conducted a performance analysis study to detect where speedup comes from, breakdown FPRaker’s execution
time and detect the performance overheads per processing element, and study how the tile configuration can affect
performance.

Sq
ue

ez
eN

et
 1.

1

VGG16

Res
Net

50
-S

2

Res
Net

18
-Q

SN
LI

Im
ag

e2
Te

xt

Det
ec

tro
n2 NCF Ber

t0%

20%

40%

60%

80%

100%

Br
ea

kd
ow

n
of

 S
ki

pp
ed

 T
er

m
s Zero Terms Out-of-Bounds Terms

Figure 4.18: Breakdown of skipped terms by FPRaker.

CHAPTER 4. FPRAKER: DNN TRAINING ACCELERATOR 41

4.7.5.1 Skipped Terms

Figure 4.18 shows a breakdown of the terms FPRaker skips. There are two cases: 1) skipping zero terms, and
2) skipping non-zero terms that are out-of-bounds due to the limited precision of the floating-point representation.

Skipping out-of-bounds terms increases term sparsity for ResNet50-S2 and Detectron2 by around 10% and
5.1%, respectively. Networks with high sparsity (zero values) such as VGG16 and SNLI benefit the least from
skipping out-of-bounds terms with the majority of term sparsity coming from zero terms. This is because there
are few terms to start with. For ResNet18-Q, most benefits come from skipping zero terms as the activations and
weights are effectively quantized to 4b values. However, as Figure 4.16 showed, skipping out-of-bound terms
improves performance much more than the fraction of terms skipped would suggest. Recall, that all lanes must
wait for the slowest one to finish processing amplifying the effect on performance across all lanes. In the worse
case, all other 7 lanes are waiting for a single one to finish, wasting 7 execution lanes. Skipping out-of-bound terms
reduces this synchronization overhead.

4.7.5.2 Computation Phase

Figure 4.19 reports speedup for each of the 3 phases of training: the A×W in forward propagation, and the
A×G and the G×W to calculate the weight and input gradients in the backpropagation, respectively. FPRaker

consistently outperforms the baseline for all three phases. The speedup depends on the amount of term sparsity,
and the value distribution of A, W , and G across models, layers, and training phases. The less number of terms a
value has, the higher the potential for FPRaker to improve performance. However, due to the limited shifting that
the FPRaker PE can perform per cycle (up to 3 positions) how terms are distributed within a value impacts the
number of cycles needed to process it. This behavior applies across lanes to the same PE and across PEs in the
same tile. In general, the set of values that are processed concurrently will translate into a specific term sparsity
pattern. FPRaker favors patterns where the terms are close to each other numerically.

Sq
ue

ez
eN

et
 1.

1

VGG16

Res
Net

50
-S

2

Res
Net

18
-Q

Im
ag

e2
Te

xt
SN

LI

Det
ec

tro
n2 NCF Ber

t

Geo
mea

n
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Sp
ee

du
p

Br
ea

kd
ow

n

AxG GxW AxW

Figure 4.19: Breakdown of FPRaker speedup over the baseline.

CHAPTER 4. FPRAKER: DNN TRAINING ACCELERATOR 42

Sq
ue

ez
eN

et
 1.

1

VGG16

Res
Net

50
-S

2

Res
Net

18
-Q

SN
LI

Im
ag

e2
Te

xt

Det
ec

tro
n2 NCF Ber

t0%

20%

40%

60%

80%

100%

La
ne

 E
ff

ic
ie

nc
y

useful
no term

shift range
inter-PE

exponent

Figure 4.20: Breakdown of execution cycles of FPRaker.

4.7.5.3 Where Cycles Go

Figure 4.20 reports a breakdown of PE lane utilization and highlights performance bottlenecks. There are several
reasons why stalls occur: 1) inter-PE synchronization, 2) intra-PE synchronization, and 3) sharing the exponent
block. Intra-PE synchronization stalls can happen in two scenarios: a) imbalance in the number of terms assigned
for each lane within a PE due to uneven distribution of the term sparsity in the model which results in idle lanes
waiting for the slowest lane to finish execution (“no terms”), b) high span across consecutive terms within a lane
which cause stalls due to the limited per cycle shift range of the PE (“shift range”).

Stalls due to sharing the exponent block are rare. The more bit-sparsity a model has the higher pressure on
the exponent block and the higher the chance that it will not be able to keep up. Exponent stalls are noticeable
for ResNet18-Q since the values there are effectively 4b. We can see a similar behavior for SNLI due to its high
bit-sparsity. However, there are other types of stalls that reduce pressure on the shared exponent block. First are
stalls due to the limited per cycle shifting ability of the PEs. These are relatively few thus demonstrating that this
technique presents a good performance vs. area trade-off. Second are stalls due to cross-lane term imbalance.
These are the highest cause of PE underutilization; 32.8% on average, and at most 55% for NCF. Term imbalance
is lowered if we reduce the number of lanes per PE or if we add weight buffers to allow faster lanes to proceed with
the next set of weights albeit with a higher area overhead. However, doing so would increase the cost of the PE.
This investigation is left for future work. Third are stalls due to inter-PE synchronization which are also rare. The
ability for PE columns to run ahead by just one set sufficiently hides these stalls.

Figure 4.21 shows the benefit of skipping out-of-bound terms in reducing the synchronization overheads (an
average of 30.3% overall reduction) by improving the load balancing across the PE lanes.

CHAPTER 4. FPRAKER: DNN TRAINING ACCELERATOR 43

O
BS

no
 O

BS

O
BS

no
 O

BS
O

BS
no

 O
BS

O
BS

no
 O

BS
O

BS
no

 O
BS

O
BS

no
 O

BS
O

BS
no

 O
BS

O
BS

no
 O

BS
O

BS
no

 O
BS

0%

20%

40%

60%

80%

100%

Sy
nc

hr
on

iz
at

io
n

O
ve

rh
ea

d
Br

ea
kd

ow
n

SqueezeNet 1.1

VGG16
ResNet50-S2

ResNet18-Q

Image2Text

SNLI
Detectro

n2

NCF Bert

exponent inter-PE shift range no term

Figure 4.21: Effect of out-of-bound terms skipping (OBS) on the synchronization overhead.

4.7.5.4 Performance Over Time

Figure 4.22 shows the speedup of FPRaker over the baseline over time and throughout the training process for all
the studied networks. The measurements show three different trends. For VGG16 speedup is higher for the first 30
epochs after which it declines by around 15% and plateaus. For ResNet18-Q, the speedup increases after epoch
30 by around 12.5% and stabilizes. This can be attributed to the PACT clipping hyperparameter being optimized
to quantize activations and weights within 4-bits or below. For the rest of the networks, speedups remain stable
throughout the training process. Overall, the measurements show that performance of FPRaker is robust and that it
delivers performance improvements across all training epochs.

0 10 20 30 40 50 60 70 80 90 100
Training %

0.0

0.5

1.0

1.5

2.0

2.5

To
ta

l S
pe

ed
up

 O
ve

r
Ti

m
e

Bert
NCF
Detectron2

SNLI
Image2Text
ResNet18-Q

ResNet50-S2
VGG16
SqueezeNet 1.1

Figure 4.22: Speedup of FPRaker vs. the baseline over time.

CHAPTER 4. FPRAKER: DNN TRAINING ACCELERATOR 44

SqueezeNet 1.1
VGG16

ResNet50-S2

ResNet18-Q

Image2Text
SNLI

Detectro
n2 NCF

Bert
0.0

0.5

1.0

1.5

2.0

2.5

To
ta

l S
pe

ed
up

 v
s

Ba
se

lin
e

16 rows
8 rows

4 rows
2 rows

Figure 4.23: Speedup of FPRaker vs. the baseline with varying the number of rows per tile.

4.7.5.5 Effect of Tile Organization

As shown in Figure 4.23, doubling the number of rows per tile reduces performance by 6% on average. This
reduction in performance is due to synchronization among a larger number of PEs per column. When the number
of rows increases, more PEs share the same set of A values. An A value that has more terms than the others will
now affect a larger number of PEs which will have to wait to finish processing. Since each PE processes a different
combination of input vectors, each can be affected differently by intra-PE stalls such as “no term” stalls or “shift
range” stalls. However, there is a trade-off between improving the energy-efficiency through higher spatial-reuse of
data with increasing the number of rows per tile and the increased synchronization overhead. Figure 4.24 shows a
breakdown of where time goes in each configuration. It can be seen that the stalls for the inter-PE synchronization
increase and so do those for stalling for other lanes (“no term”).

2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

0%

20%

40%

60%

80%

100%

La
ne

 E
ff

ic
ie

nc
y

#rows/tile
Squee

ze
Net

1.1

VGG16

Res
Net5

0-S2

Res
Net1

8-Q

SNLI
Im

ag
e2

Tex
t

Dete
ctr

on2

NCF
Bert

exponent
inter-PE

shift range
no term

useful

Figure 4.24: Varying the number of rows: Breakdown of Cycles.

CHAPTER 4. FPRAKER: DNN TRAINING ACCELERATOR 45

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

CIFAR-10

0 10 20 30 40 50 60 70 80 90 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

1
Va

lid
at

io
n

Ac
cu

ra
cy

CIFAR-100

Native_FP32 Baseline_BF16 FPRaker_BF16

Figure 4.25: Top-1 validation accuracy of training ResNet18 by emulating the FPRaker processing in PlaidML.

4.7.6 Accuracy Study

To study the effect of training with FPRaker on accuracy, we emulated the bit-serial processing of FPRaker PE
during end-to-end training in PlaidML [92] which is a machine learning framework based on an OpenCL compiler
at the backend. We force PlaidML to use the mad() function for every multiply-add during training. We override
the mad() function with our implementation to emulate the processing of the FPRaker PE. We trained ResNet18 on
CIFAR-10 and CIFAR-100 datasets as shown in Figure 4.25. The blue line shows the top-1 validation accuracy
for training natively in PlaidML with FP32 precision. The baseline performs bit-parallel MAC with I/O operands
precision in bfloat16 format which is known to converge and is supported in the industry, e.g. in Google’s TPU.
The figure shows that both the baseline and FPRaker emulated versions converge at epoch 60 for both datasets with
accuracy difference within 0.1% relative to the native training version. This is expected since FPRaker skips only
ineffectual work, i.e., work which does not affect final result in the baseline MAC processing.

4.7.7 Per Layer Accumulator Width Profiling

Conventionally, training uses bfloat16 for all computations. As we noted in the introduction, there have been
proposals for using mixed datatype arithmetic where some of the computations used fixed-point instead [23, 28,
80, 86]. Sakr et. al [98], propose to use floating-point where the number of bits used by the mantissa varies
per operation and per layer. We use the suggested mantissa precisions while training AlexNet and ResNet18 on
ImageNet. Figure 4.26 shows the performance of FPRaker following this approach. FPRaker can dynamically
take advantage of the variable accumulator width per layer to skip the ineffectual terms mapping outside the
accumulator boosting overall performance. Training ResNet18 on ImageNet with per layer profiled accumulator
width boosts the speedup of FPRaker by 1.51×, 1.45× and 1.22× for A×W , G×W and A×G, respectively
achieving an overall speedup of 1.56× over the bit-parallel baseline accelerator, compared to a 1.13× speedup
that is achieved by training FPRaker with a fixed accumulator width. Adjusting the mantissa length while using a
bfloat16 container manifests itself a suffix of zero bits in the mantissa.

CHAPTER 4. FPRAKER: DNN TRAINING ACCELERATOR 46

Alexnet
AlexNet-P

ResNet18

ResNet18-P
0%

20%

40%

60%

80%

100%

To
ta

l E
xe

cu
ti

on
 C

yc
le

s

AxW GxW AxG

Figure 4.26: Performance of FPRaker with per layer profiled accumulator width [98] vs. fixed accumulator width.

4.8 Summary

In this chapter, we showed that bit-sparsity is significantly high during training, and the average potential speedup
for exploiting bit-sparsity in one of the MAC operands is 6.5× for the networks studied. We presented FPRaker, a
hardware accelerator for training DNNs that takes advantage of the inherent bit-sparsity during training to boost
performance and energy-efficiency. FPRaker is designed to skip the ineffectual computations in both convolution
and fully-connected layers. By decomposing the multiplication into a series of “shift-and-add” operations, FPRaker

can skip fine-grain ineffectual computations due to zero terms in the serialized operand, or non-zero terms with
partial sums mapping outside the range of the accumulator (out-of-bounds terms). We showed that FPRaker

benefits from advances in training-time pruning, quantization, or accumulator bit-width profiling. We found that for
the studied networks, FPRaker is on average 1.5× faster and 1.4× more energy-efficient. Further, we proposed a
memory compression technique for the exponent part of the values during training based on base-delta compression
that takes advantage of the narrow value distribution during training to reduce the off-chip memory bandwidth.

Chapter 5

Conclusion and Future Work

5.1 Summary of Contributions

In summary, this thesis makes the following contributions:

• We demonstrate that a large fraction of the work performed during training is ineffectual. To expose this
ineffectual work we decompose each multiplication into a series of single bit multiply-accumulate operations.
This reveals two sources of ineffectual work: First, more than 85% of the computations are ineffectual since
one of the inputs is zero. Second, the combination of the high dynamic range (exponent) and the limited
precision (mantissa) often yields values which are non-zero, yet too small to affect the accumulated result,
even when using extended precision (e.g., trying to accumulate 2−64 into 264). This observation led us to
consider whether it is possible to use bit-skipping (bit-serial where we skip over zero bits) processing to
exploit these two behaviors.

• We propose FPRaker, a processing tile for training accelerators which exploits both bit-sparsity and out-of-
bounds computations. FPRaker comprises several adder-tree based processing elements organized in a grid
so that it can exploit data reuse both spatially and temporally. The processing elements multiply multiple
value pairs concurrently and accumulate their products into an output accumulator. They process one of
the input operands per multiplication as a series of signed powers of two hitherto referred to as terms. The
conversion of that operand into powers of two is performed on the fly; all operands are stored in floating
point format in memory. The processing elements take advantage of ineffectual work that stems either from
mantissa bits that were zero or from out-of-bounds multiplications given the current accumulator value.
The tile is designed for area efficiency and it incorporates the following design choices for this purpose:
a) The processing element limits the range of powers-of-two that they can be processed simultaneously
greatly reducing the cost of its shift-and-add components. b) A common exponent processing unit that is
time-multiplexed among multiple processing elements. c) The power-of-two encoders are shared along the
rows. d) Per processing element buffers reduce the effects of work imbalance across the processing elements.
e) The PE implements a low cost mechanism for eliminating out-of-bound intermediate values. Skipping
out-of-bound intermediate values not only reduces the amount of work, but more importantly proves very
effective in reducing the effect of cross-lane synchronization.

• We propose a simple and low-overhead memory compression technique for the exponent part of floating-
point values during training. We observe that values typically have narrow distribution during training where
consecutive values across the tensor channels have similar values and hence their exponents. Accordingly, we

47

CHAPTER 5. CONCLUSION AND FUTURE WORK 48

encode exponents for each group of values using the base-delta compression scheme. We use this encoding
to save off-chip memory bandwidth when reading and storing data to the off-chip DRAM.

5.2 Directions for Future Work

The pervasive applications of deep learning and the end of Dennard scaling have been driving efforts for accelerating
deep learning inference and training. This thesis studied the data characteristics during training DNNs and proposed
a hardware accelerator and a memory compression scheme to reduce the amount of computation and off-chip
memory transfers, respectively. This section presents some potential research directions for future work in the area
of deep learning hardware acceleration.

This thesis evaluated FPRaker for training, however it can naturally also be used for inference. While many
neural network models can use fixed-point arithmetic there are models that still require floating-point arithmetic.
For example, these include models that process natural language or recommendation systems. Whether FPRaker

will provide benefits for inference with such models needs further attention.

Interestingly, it has been shown that training can be enhanced by the presence of noise [110] and reduced preci-
sion has been represented as a form of regularization [20]. This indicates that training with approximate/reduced
precision computing may offer better performance-accuracy tradeoffs to training. While training typically needs
high precision to converge to the state-of-the-art accuracy, dynamically-controlled intermittent approximation/quan-
tization may prove benficial.

As shown in Section 4.7.5.3, FPRaker loses 38.6% of its potential speedup due to intra-PE synchronization
overhead, which results due to work imbalance among the lanes of a PE where some lanes have more terms to
process leading to stalling the PE till the slowest lane finishes processing. We showed that skipping out-of-bound
terms can significantly reduce the synchronization overheads and hence boosting performance with an inexpensive
area overhead. To further alleviate the synchronization overheads on the hardware-level, adding an extra input
buffer per tile can allow breaking the synchronization across the PE lanes, i.e., faster lanes do not have to wait
for slower lanes and can advance to process the next pair of inputs, albeit with an additional area and control
complexity overhead. Reducing the input MAC operands can reduce the intra-PE synchronization, however it also
reduces the data parallelism.

Multiple approaches can implemented on the software-level to reduce the synchronization overhead. Conven-
tionally, training DNNs on graphics processing units (GPUs) or bit-parallel accelerators is performed by selecting a
fixed high precision format for the end-to-end training, which is typically FP32 or Bfloat16 format. However, this
approach amounts to worst-case design. Ideally, precision would be optimized per layer, training epoch, and even
the computation phase (A×W , G×W , A×G) of a model. For example, a different precision can be assigned to
each layer during training depending on the layer’s sensitivity to quantization. Further, a model might require less
precision during early training epochs while requiring gradually increasing precision as it gets closer to convergence
for fine tuning. Also, it was shown that gradients have wider value distribution compared to activations or weights,
and hence require higher precision. Accordingly, computations in the forward pass (A×W) can be performed
with less precision than computations in the backward pass (G×W , A×G). Reducing the precision of the MAC
operations increases the number of zero terms. Similarly, the accumulator precision can be dynamically assigned
during training on a fine-granularity, and not just profiled per layer as discussed in Section 4.7.7. Reducing the
accumulator precision increases the number of out-of-bounds terms. Since FPRaker can adapt dynamically to
different precisions, it can reward innovations in training algorithms that optimize precision on a fine-granularity
during training by boosting performance and energy-efficiency.

CHAPTER 5. CONCLUSION AND FUTURE WORK 49

Another approach is to modify the training cost function to limit the number of terms per weight value.
Processing weights term-serially for A×W and G×W training phases would alleviate the synchronization
overhead across lanes of the same PE. The incremental network quantization (INQ) [126] is a method that
constrains the weights to be either powers of two (one term per value) or zero. However, INQ targets pre-trained
networks. Future work can study training networks from scratch with limiting the number of terms per weight
value. Further, future work can study the effect of other dataflows, e.g., spatial dataflow where groups of values
will be accessed spatially in the WH-dimensions before going depthwise across C-dimension, on the intra-PE
synchronization overhead and accordingly performance.

Further, FPRaker can benefit and can be directly applied to new quantization techniques such as DRQ [129].
It’s presented in the context of inference but can also be applied to training. DRQ quantizes activations per layer
on-the-fly through predicting the importance of different regions in the feature maps. It quantizes the unimportant
regions to 4b since they use conventional 4b MAC units. FPRaker’s ability to adapt to any precision can allow this
technique to quantize activations on a finer-grain achieving more benefits.

We have discussed a broad spectrum of software level training acceleration techniques and some accelerator
designs in the introduction. Since FPRaker is a processing element level method it can in principle be used with
any of these techniques to further boost performance and energy efficiency. However, there will be interactions that
would need to be investigated. For example, since FPRaker requires more parallelism to match and exceed the
throughput of a conventional bit-parallel PE it will interact with data reuse/dataflow selection methods. However,
data parallelism is abundant during training due to the use of batching. The investigation of these interactions while
certainly interesting is left for future work.

Bibliography

[1] NVIDIA Tesla V100 GPU Achitecture. https://images.nvidia.com/content/volta-

architecture/pdf/volta-architecture-whitepaper.pdf, 2017.

[2] Cerebras CS1. https://www.cerebras.net/product/, 2019.

[3] Gaudi training platform white paper. https://habana.ai/wp-content/uploads/2019/06/Habana-

Gaudi-Training-Platform-whitepaper.pdf, 2019.

[4] Chip Design with Deep Reinforcement Learning. https://ai.googleblog.com/2020/04/chip-

design-with-deep-reinforcement.html, 2020.

[5] Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning From Data. AMLBook, 2012.

[6] Jorge Albericio, Alberto Delmás, Patrick Judd, Sayeh Sharify, Gerard O’Leary, Roman Genov, and Andreas
Moshovos. Bit-pragmatic deep neural network computing. In Intl’ Symp. on Microarchitecture, 2017.

[7] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright Jerger, and Andreas
Moshovos. CNVLUTIN: Ineffectual-Neuron-Free Deep Neural Network Computing. In Intl’ Symp. on

Computer Architecture, 2016.

[8] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communication-
efficient sgd via gradient quantization and encoding. In Advances in Neural Information Processing Systems,
pages 1709–1720, 2017.

[9] Dario Amodei, Danny Hernadez, Girish Sastry, Jack Clark, Greg Brockman, and Ilya Sutskever. Open AI
Blog. https://openai.com/blog/ai-and-compute/.

[10] A. D Booth. A signed binary multiplication technique. The Quarterly Journal of Mechanics and Applied

Mathematics, 4(2):236–240, 1951.

[11] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated
corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing, pages 632–642, Lisbon, Portugal, September 2015. Association
for Computational Linguistics.

[12] Cadence. Innovus implementation system. https://www.cadence.com/content/cadence-

www/global/en US/home/tools/digital-design-and-signoff/hierarchical-design-and-

floorplanning/innovus-implementation-system.html.

50

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.cerebras.net/product/
https://habana.ai/wp-content/uploads/2019/06/Habana-Gaudi-Training-Platform-whitepaper.pdf
https://habana.ai/wp-content/uploads/2019/06/Habana-Gaudi-Training-Platform-whitepaper.pdf
https://ai.googleblog.com/2020/04/chip-design-with-deep-reinforcement.html
https://ai.googleblog.com/2020/04/chip-design-with-deep-reinforcement.html
https://openai.com/blog/ai-and-compute/
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/hierarchical-design-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/hierarchical-design-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/hierarchical-design-and-floorplanning/innovus-implementation-system.html

BIBLIOGRAPHY 51

[13] Francisco M. Castro, Manuel J. Marı́n-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek Alahari.
End-to-end incremental learning. In Computer Vision - ECCV 2018 - 15th European Conference, Munich,

Germany, September 8-14, 2018, Proceedings, Part XII, pages 241–257, 2018.

[14] P Chau, K. Chew, and W. Ki. A bit-serial floating-point complex multiplier-accumulator for fault-tolerant
digital signal processing arrays. In IEEE International Conference on Acoustics, Speech, and Signal

Processing, pages 483–486. IEEE, 1987.

[15] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for energy-efficient dataflow for
convolutional neural networks. In Intl’ Symp. on Computer Architecture, 2016.

[16] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for energy-efficient dataflow for
convolutional neural networks. In ACM SIGARCH Computer Architecture News, volume 44, pages 367–379.
IEEE Press, 2016.

[17] Yu-Hsin Chen, Tien-Ju Yang, Joel S. Emer, and Vivienne Sze. Eyeriss v2: A flexible accelerator for
emerging deep neural networks on mobile devices. IEEE J. Emerg. Sel. Topics Circuits Syst., 9(2):292–308,
2019.

[18] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of neural
machine translation: Encoder-decoder approaches, 2014.

[19] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and
Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized neural networks. arXiv

preprint arXiv:1805.06085, 2018.

[20] M. Courbariaux, Y. Bengio, and J.-P. David. BinaryConnect: Training Deep Neural Networks with binary
weights during propagations. volume abs/1511.00363, 2015.

[21] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training deep neural networks with low
precision multiplications, 2014.

[22] Yann Le Cun, John S. Denker, and Sara A. Solla. Optimal brain damage. In Advances in Neural Information

Processing Systems, pages 598–605. Morgan Kaufmann, 1990.

[23] Dipankar Das, Naveen Mellempudi, Dheevatsa Mudigere, Dhiraj D. Kalamkar, Sasikanth Avancha, Kunal
Banerjee, Srinivas Sridharan, Karthik Vaidyanathan, Bharat Kaul, Evangelos Georganas, Alexander Hei-
necke, Pradeep Dubey, Jesús Corbal, Nikita Shustrov, Roman Dubtsov, Evarist Fomenko, and Vadim O.
Pirogov. Mixed precision training of convolutional neural networks using integer operations. In 6th Inter-

national Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,

2018, Conference Track Proceedings, 2018.

[24] Christopher De Sa, Megan Leszczynski, Jian Zhang, Alana Marzoev, Christopher R Aberger, Kunle
Olukotun, and Christopher Ré. High-accuracy low-precision training. arXiv preprint arXiv:1803.03383,
2018.

[25] Alberto Delmas Lascorz, Patrick Judd, Dylan Malone Stuart, Zissis Poulos, Mostafa Mahmoud, Sayeh
Sharify, Milos Nikolic, Kevin Siu, and Andreas Moshovos. Bit-tactical: A software/hardware approach to
exploiting value and bit sparsity in neural networks. In Proceedings of the Twenty-Fourth International

BIBLIOGRAPHY 52

Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’19,
pages 749–763, New York, NY, USA, 2019. ACM.

[26] Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing perfor-
mance. arXiv preprint arXiv:1907.04840, 2019.

[27] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding, 2018.

[28] Mario Drumond, Tao Lin, Martin Jaggi, and Babak Falsafi. Training dnns with hybrid block floating point.
In Proceedings of the 32Nd International Conference on Neural Information Processing Systems, NIPS’18,
pages 451–461, USA, 2018. Curran Associates Inc.

[29] Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun Subramaniyan, Ravi R. Iyer, Dennis Sylvester,
David T. Blaauw, and Reetuparna Das. Neural cache: Bit-serial in-cache acceleration of deep neural
networks. In 45th ACM/IEEE Annual Intl’ Symp. on Computer Architecture, ISCA 2018, Los Angeles, CA,

USA, June 1-6, 2018, pages 383–396, 2018.

[30] Desmond Elliott, Stella Frank, Khalil Sima’an, and Lucia Specia. Multi30k: Multilingual english-german
image descriptions, 2016.

[31] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey, 2018.

[32] Ben Feinberg, Uday Kumar Reddy Vengalam, Nathan Whitehair, Shibo Wang, and Engin Ipek. Enabling
scientific computing on memristive accelerators. In Proceedings of the 45th Annual International Symposium

on Computer Architecture, ISCA ’18, page 367–382. IEEE Press, 2018.

[33] Sameh Galal and Mark Horowitz. Energy-efficient floating-point unit design. IEEE Trans. Computers,
60(7):913–922, 2011.

[34] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. TETRIS: scalable and efficient
neural network acceleration with 3d memory. In Intl’ Conf. on Architectural Support for Programming

Languages and Operating Systems, 2017.

[35] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. CoRR, abs/1311.2524, 2013.

[36] Maximilian Golub, Guy Lemieux, and Mieszko Lis. Dropback: Continuous pruning during training. arXiv

preprint arXiv:1806.06949, 2018.

[37] Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and T. N. Vijaykumar. Sparten: A sparse tensor
accelerator for convolutional neural networks. In Proceedings of the 52Nd Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO ’52, pages 151–165, New York, NY, USA, 2019. ACM.

[38] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet in 1 hour, 2017.

[39] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with limited
numerical precision. In International Conference on Machine Learning, pages 1737–1746, 2015.

BIBLIOGRAPHY 53

[40] Udit Gupta, Brandon Reagen, Lillian Pentecost, Marco Donato, Thierry Tambe, Alexander M. Rush,
Gu-Yeon Wei, and David Brooks. MASR: A modular accelerator for sparse rnns. In 28th International

Conference on Parallel Architectures and Compilation Techniques, PACT 2019, Seattle, WA, USA, September

23-26, 2019, pages 1–14. IEEE, 2019.

[41] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and William J. Dally. Eie:
Efficient inference engine on compressed deep neural network. In Intl’ Symp. on Computer Architecture,
2016.

[42] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing Deep Neural Networks with
Pruning, Trained Quantization and Huffman Coding. CoPR, abs/1510.00149, 2015.

[43] Awni Y. Hannun, Carl Case, Jared Casper, Bryan C. Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger,
Sanjeev Satheesh, Shubho Sengupta, Adam Coates, and Andrew Y. Ng. Deep speech: Scaling up end-to-end
speech recognition. CoRR, abs/1412.5567, 2014.

[44] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. ACM Trans.

Interact. Intell. Syst., 5(4), December 2015.

[45] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy H Campbell. Tictac: Accelerating distributed deep
learning with communication scheduling. arXiv preprint arXiv:1803.03288, 2018.

[46] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
CoRR, abs/1512.03385, 2015.

[47] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural collaborative
filtering, 2017.

[48] Kartik Hegde, Jiyong Yu, Rohit Agrawal, Mengjia Yan, Michael Pellauer, and Christopher W. Fletcher.
Ucnn: Exploiting computational reuse in deep neural networks via weight repetition. In Proceedings of the

45th Annual International Symposium on Computer Architecture, ISCA ’18, pages 674–687, Piscataway, NJ,
USA, 2018. IEEE Press.

[49] Greg Henry, Ping Tak Peter Tang, and Alexander Heinecke. Leveraging the bfloat16 artificial intelligence
datatype for higher-precision computations. 2019 IEEE 26th Symposium on Computer Arithmetic (ARITH),
Jun 2019.

[50] HewlettPackard. Cacti. https://github.com/HewlettPackard/cacti.

[51] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R. Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors, 2012.

[52] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. Gradient flow in recurrent nets:
the difficulty of learning long-term dependencies, 2001.

[53] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong Lee,
Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural networks using
pipeline parallelism. In Advances in Neural Information Processing Systems, pages 103–112, 2019.

https://github.com/HewlettPackard/cacti

BIBLIOGRAPHY 54

[54] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model size. CoRR,
abs/1602.07360, 2016.

[55] Intel. Modelsim-intel, fpga edition software. https://www.intel.ca/content/www/ca/en/software/
programmableprime/model-sim.html.

[56] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift, 2015.

[57] Roxana Istrate, Adelmo Cristiano Innocenza Malossi, Costas Bekas, and Dimitrios S. Nikolopoulos. Incre-
mental training of deep convolutional neural networks. CoRR, abs/1803.10232, 2018.

[58] Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia Tang, and Gennady Pekhimenko. Gist: Efficient data
encoding for deep neural network training. In Proceedings of the 45th Annual International Symposium on

Computer Architecture, ISCA ’18, pages 776–789, Piscataway, NJ, USA, 2018. IEEE Press.

[59] Anand Jayarajan. Priority-based parameter propagation for distributed deep neural network training. PhD
thesis, University of British Columbia, 2019.

[60] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,
Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra
Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan
Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew,
Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan
Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul
Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda,
Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov,
Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian,
Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun
Yoon. In-datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th Annual

International Symposium on Computer Architecture, ISCA ’17, pages 1–12, New York, NY, USA, 2017.
ACM.

[61] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor Aamodt, and Andreas Moshovos. Stripes: Bit-serial
Deep Neural Network Computing . In Intl’ Symp. on Microarchitecture, 2016.

[62] Dongyoung Kim, Junwhan Ahn, and Sungjoo Yoo. Zena: Zero-aware neural network accelerator. IEEE

Design Test, 35:39–46, 2018.

[63] Urs Köster, Tristan J. Webb, Xin Wang, Marcel Nassar, Arjun K. Bansal, William H. Constable, Oğuz H.
Elibol, Scott Gray, Stewart Hall, Luke Hornof, Amir Khosrowshahi, Carey Kloss, Ruby J. Pai, and Naveen
Rao. Flexpoint: An adaptive numerical format for efficient training of deep neural networks. In Proceedings

of the 31st International Conference on Neural Information Processing Systems, NIPS’17, pages 1740–1750,
USA, 2017. Curran Associates Inc.

[64] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional
neural networks. Commun. ACM, 60(6):84–90, May 2017.

https://www.intel.ca/content/www/ca/en/software/programmable prime/model-sim.html
https://www.intel.ca/content/www/ca/en/software/programmable prime/model-sim.html

BIBLIOGRAPHY 55

[65] H. T. Kung, Bradley McDanel, and Sai Qian Zhang. Packing sparse convolutional neural networks for
efficient systolic array implementations: Column combining under joint optimization. In Iris Bahar, Maurice
Herlihy, Emmett Witchel, and Alvin R. Lebeck, editors, Proceedings of the Twenty-Fourth International

Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2019,

Providence, RI, USA, April 13-17, 2019, pages 821–834. ACM, 2019.

[66] Pran Kurup and Taher Abbasi. Logic Synthesis Using Synopsys. Springer Publishing Company, Incorporated,
2nd edition, 2011.

[67] Alberto Delmas Lascorz, Sayeh Sharify, Isak Edo Vivancos, Dylan Malone Stuart, Omar Mohamed
Awad, Patrick Judd, Mostafa Mahmoud, Milos Nikolic, Kevin Siu, Zissis Poulos, and Andreas Moshovos.
Shapeshifter: Enabling fine-grain data width adaptation in deep learning. In Proceedings of the 52nd Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 2019, Columbus, OH, USA, October

12-16, 2019, pages 28–41. ACM, 2019.

[68] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444, 05 2015.

[69] Jinmook Lee, Changhyeon Kim, Sanghoon Kang, Dongjoo Shin, Sangyeob Kim, and Hoi-Jun Yoo. UNPU:
an energy-efficient deep neural network accelerator with fully variable weight bit precision. J. Solid-State

Circuits, 54(1):173–185, 2019.

[70] H. Liao, J. Tu, J. Xia, and X. Zhou. DaVinci: A scalable architecture for neural network computing. In 2019

IEEE Hot Chips 31 Symposium (HCS), pages 1–44, 2019.

[71] Aristidis Likas, Nikos Vlassis, and Jakob Verbeek. The global k-means clustering algorithm. Pattern

Recognition, 36:451–461, 08 2002.

[72] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona,
Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects in context, 2014.

[73] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William Dally. Deep gradient compression: Reducing the
communication bandwidth for distributed training. 2018.

[74] Chang Liu, Changhu Wang, Fuchun Sun, and Yong Rui. Image2text: A multimodal image captioner. In
Proceedings of the 24th ACM International Conference on Multimedia, MM ’16, page 746–748, New York,
NY, USA, 2016. Association for Computing Machinery.

[75] Shaoli Liu, Zidong Du, Jinhua Tao, Dong Han, Tao Luo, Yuan Xie, Yunji Chen, and Tianshi Chen.
Cambricon: An instruction set architecture for neural networks. In 2016 IEEE/ACM Intl’ Conf. on Computer

Architecture (ISCA), 2016.

[76] Sangkug Lym, Armand Behroozi, Wei Wen, Ge Li, Yongkee Kwon, and Mattan Erez. Mini-batch serializa-
tion: Cnn training with inter-layer data reuse, 2018.

[77] Pavan Kumar Mallapragada, Rong Jin, and Anil Jain. Non-parametric mixture models for clustering. In
Edwin R. Hancock, Richard C. Wilson, Terry Windeatt, Ilkay Ulusoy, and Francisco Escolano, editors,
Structural, Syntactic, and Statistical Pattern Recognition, pages 334–343, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

BIBLIOGRAPHY 56

[78] Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Micikevicius, David Patterson,
Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, David Brooks, Dehao Chen, Debojyoti Dutta, Udit
Gupta, Kim Hazelwood, Andrew Hock, Xinyuan Huang, Atsushi Ike, Bill Jia, Daniel Kang, David Kanter,
Naveen Kumar, Jeffery Liao, Guokai Ma, Deepak Narayanan, Tayo Oguntebi, Gennady Pekhimenko, Lillian
Pentecost, Vijay Janapa Reddi, Taylor Robie, Tom St. John, Tsuguchika Tabaru, Carole-Jean Wu, Lingjie
Xu, Masafumi Yamazaki, Cliff Young, and Matei Zaharia. Mlperf training benchmark, 2019.

[79] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,

Conference Track Proceedings, 2017.

[80] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich Elsen, David Garcı́a, Boris
Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed precision training.
In 6th International Conference on Learning Representations, 2018, Vancouver, BC, Canada, April 30 -

May 3, 2018, Conference Track Proceedings, 2018.

[81] Inc. Micron Technology. Ddr4 power calculator 4.0. https://www.micron.com/~/media/documents/
products/power-calculator/ddr4 power calc.xlsm.

[82] Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks by
dynamic sparse reparameterization. In International Conference on Machine Learning, pages 4646–4655,
2019.

[83] Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks by
dynamic sparse reparameterization. In International Conference on Machine Learning, pages 4646–4655,
2019.

[84] Manish Munikar, Sushil Shakya, and Aakash Shrestha. Fine-grained sentiment classification using bert,
2019.

[85] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gregory R.
Ganger, Phillip B. Gibbons, and Matei Zaharia. Pipedream: Generalized pipeline parallelism for dnn training.
In Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP ’19, pages 1–15, New
York, NY, USA, 2019. ACM.

[86] NVIDIA. Training with mixed precision. https://docs.nvidia.com/deeplearning/sdk/mixed-

precision-training/index.html.

[87] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan Venkatesan, Brucek
Khailany, Joel Emer, Stephen W. Keckler, and William J. Dally. SCNN: an accelerator for compressed-sparse
convolutional neural networks. In Intl’ Symp. on Computer Architecture, ISCA ’17, 2017.

[88] Eunhyeok Park, Dongyoung Kim, and Sungjoo Yoo. Energy-efficient neural network accelerator based on
outlier-aware low-precision computation. In Intl’ Symp. on Computer Architecture, 2018.

[89] Eunhyeok Park, Sungjoo Yoo, and Peter Vajda. Value-aware quantization for training and inference of neural
networks, 2018.

https://www.micron.com/~/media/documents/products/power-calculator/ddr4_power_calc.xlsm
https://www.micron.com/~/media/documents/products/power-calculator/ddr4_power_calc.xlsm
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html

BIBLIOGRAPHY 57

[90] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch, and Todd C.
Mowry. Base-delta-immediate compression: Practical data compression for on-chip caches. In Proceedings

of the 21st International Conference on Parallel Architectures and Compilation Techniques, PACT ’12, page
377–388, New York, NY, USA, 2012. Association for Computing Machinery.

[91] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong
Guo. A generic communication scheduler for distributed dnn training acceleration. In Proceedings of the

27th ACM Symposium on Operating Systems Principles, SOSP ’19, pages 16–29, New York, NY, USA,
2019. ACM.

[92] Intel AI PlaidML. Plaidml. 2017.

[93] Tomaso Poggio, Hrushikesh Mhaskar, Lorenzo Rosasco, Brando Miranda, and Qianli Liao. Why and when
can deep – but not shallow – networks avoid the curse of dimensionality: a review, 2016.

[94] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text, 2016.

[95] Minsoo Rhu, Mike O’Connor, Niladrish Chatterjee, Jeff Pool, Youngeun Kwon, and Stephen W Keckler.
Compressing dma engine: Leveraging activation sparsity for training deep neural networks. In 2018 IEEE

International Symposium on High Performance Computer Architecture (HPCA), pages 78–91. IEEE, 2018.

[96] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Internal Representations by Error Propagation,
page 318–362. MIT Press, Cambridge, MA, USA, 1986.

[97] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. CoRR, abs/1409.0575, September 2014.

[98] Charbel Sakr, Naigang Wang, Chia-Yu Chen, Jungwook Choi, Ankur Agrawal, Naresh Shanbhag, and
Kailash Gopalakrishnan. Accumulation bit-width scaling for ultra-low precision training of deep networks,
2019.

[99] Charbel Sakr, Naigang Wang, Chia-Yu Chen, Jungwook Choi, Ankur Agrawal, Naresh Shanbhag, and
Kailash Gopalakrishnan. Accumulation bit-width scaling for ultra-low precision training of deep networks,
2019.

[100] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and application
to data-parallel distributed training of speech dnns. In Interspeech 2014, September 2014.

[101] Christopher J Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and George E
Dahl. Measuring the effects of data parallelism on neural network training. Journal of Machine Learning

Research, 20(112):1–49, 2019.

[102] Sayeh Sharify, Alberto Delmas Lascorz, Mostafa Mahmoud, Milos Nikolic, Kevin Siu, Dylan Malone Stuart,
Zissis Poulos, and Andreas Moshovos. Laconic deep learning inference acceleration. In Proceedings of the

46th International Symposium on Computer Architecture, ISCA 2019, Phoenix, AZ, USA, June 22-26, 2019,
pages 304–317, 2019.

BIBLIOGRAPHY 58

[103] Sayeh Sharify, Alberto Delmas Lascorz, Kevin Siu, Patrick Judd, and Andreas Moshovos. Loom: Exploiting
weight and activation precisions to accelerate convolutional neural networks. In Proceedings of the 55th

Annual Design Automation Conference, page 20. ACM, 2018.

[104] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson Chau, Vikas Chandra, and Hadi
Esmaeilzadeh. Bit fusion: Bit-level dynamically composable architecture for accelerating deep neural
network. In ISCA, pages 764–775. IEEE Computer Society, 2018.

[105] Jitesh R. Shinde and Suresh S. Salankar. VLSI implementation of bit serial architecture based multiplier in
floating point arithmetic. In 2015 International Conference on Advances in Computing, Communications

and Informatics, ICACCI 2015, Kochi, India, August 10-13, 2015, pages 1672–1677. IEEE, 2015.

[106] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint

arXiv:1909.08053, 2019.

[107] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[108] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine learning
algorithms. In Proceedings of the 25th International Conference on Neural Information Processing Systems

- Volume 2, NIPS’12, page 2951–2959, Red Hook, NY, USA, 2012. Curran Associates Inc.

[109] Linghao Song, Jiachen Mao, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen. Hypar: Towards hybrid
parallelism for deep learning accelerator array. 2019 IEEE International Symposium on High Performance

Computer Architecture (HPCA), Feb 2019.

[110] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):1929–1958, January
2014.

[111] Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang. meprop: Sparsified back propagation for
accelerated deep learning with reduced overfitting. In Proceedings of the 34th International Conference on

Machine Learning - Volume 70, ICML’17, pages 3299–3308. JMLR.org, 2017.

[112] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT Press, Cambridge,
MA, USA, 1st edition, 1998.

[113] Ehsan Taher, Seyed Abbas Hoseini, and Mehrnoush Shamsfard. Beheshti-ner: Persian named entity
recognition using bert, 2020.

[114] Igor V. Tetko, David J. Livingstone, and Alexander I. Luik. Neural network studies, 1. comparison of
overfitting and overtraining. Journal of Chemical Information and Computer Sciences, 35:826–833, 1995.

[115] Swagath Venkataramani, Ashish Ranjan, Subarno Banerjee, Dipankar Das, Sasikanth Avancha, Ashok
Jagannathan, Ajaya Durg, Dheemanth Nagaraj, Bharat Kaul, Pradeep Dubey, and Anand Raghunathan.
Scaledeep: A scalable compute architecture for learning and evaluating deep networks. In Proceedings of

the 44th Annual International Symposium on Computer Architecture, ISCA ’17, pages 13–26, New York,
NY, USA, 2017. ACM.

BIBLIOGRAPHY 59

[116] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: Lessons learned from
the 2015 MSCOCO image captioning challenge. CoRR, abs/1609.06647, 2016.

[117] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan. Training deep
neural networks with 8-bit floating point numbers. In Proceedings of the 32Nd International Conference on

Neural Information Processing Systems, NIPS’18, pages 7686–7695, USA, 2018. Curran Associates Inc.

[118] Shibo Wang and Pankaj Kanwar. Bfloat16: The secret to high performance on cloud tpus, 2019.

[119] Zelun Wang and Jyh-Charn Liu. Translating math formula images to latex sequences using deep neural
networks with sequence-level training, 2019.

[120] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad: Ternary
gradients to reduce communication in distributed deep learning. In Proceedings of the 31st International

Conference on Neural Information Processing Systems, NIPS’17, pages 1508–1518, USA, 2017. Curran
Associates Inc.

[121] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2. https:

//github.com/facebookresearch/detectron2, 2019.

[122] Tianjun Xiao, Jiaxing Zhang, Kuiyuan Yang, Yuxin Peng, and Zheng Zhang. Error-driven incremental
learning in deep convolutional neural network for large-scale image classification. In Proceedings of the

ACM International Conference on Multimedia, MM ’14, Orlando, FL, USA, November 03 - 07, 2014, pages
177–186, 2014.

[123] Jiaqi Zhang, Xiangru Chen, Mingcong Song, and Tao Li. Eager pruning: Algorithm and architecture support
for fast training of deep neural networks. In Proceedings of the 46th International Symposium on Computer

Architecture, ISCA ’19, pages 292–303, New York, NY, USA, 2019. ACM.

[124] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo, Tianshi Chen, and Yunji
Chen. Cambricon-x: An accelerator for sparse neural networks. In Intl’ Symp. on Microarchitecture, 2016.

[125] Zhiyuan Zhang, Pengcheng Yang, Xuancheng Ren, and Xu Sun. Memorized sparse backpropagation, 2019.

[126] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quantization:
Towards lossless cnns with low-precision weights, 2017.

[127] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160, 2016.

[128] Xuda Zhou, Zidong Du, Qi Guo, Chengsi Liu, Chao Wang, Xuehai Zhou, Ling Li, Tianshi Chen, and Yunji
Chen. Cambricon-S: addressing irregularity in sparse neural networks through a cooperative software/hard-
ware approach. In Intl’ Symp. on Microarchitecture, 2018.

[129] Feiyang Wu Zhaoming Jiang Li Jiang Naifeng Jing Xiaoyao Liang Zhuoran Song, Bangqi Fu. Drq:
Dynamic region-based quantization for deep neural network acceleration. In Proceedings of the 45th Annual

International Symposium on Computer Architecture, ISCA ’20, 2020.

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

	Introduction
	Motivation
	Contributions
	Thesis Organization

	Background
	Introduction to Deep Learning
	From Linear Regression to Neural Networks
	Neural Networks
	Convolution Layer
	Depthwise Separable Convolution Layer
	Normalization Layers
	Pooling Layer
	Activation Layer

	Inference
	Training

	Networks Studied
	Image Classification
	SqueezeNet 1.1
	VGG16
	ResNet

	Object Detection
	Scene Understanding
	Recommendation Systems
	Natural Language Modeling
	Bert
	SNLI

	Summary

	Related Work
	Software Approaches to Accelerate Training
	Pruning
	Quantization
	Selective Back-propagation

	Bit-Serial Hardware Accelerators for Inference
	Floating-Point Arithmetic
	Fused Multiply-Accumulate
	Bit-Serial Multiply-Accumulate Units

	Accelerators Targeting Floating-Point Ineffectual Computations
	Summary

	FPRaker: DNN Training Accelerator
	Ineffectual Work During Training
	Bit-Parallel Baseline Accelerator
	Exposing Ineffectual Work
	Architecture
	FPRaker Processing Element
	Baseline Design
	2-Stage Shifting
	Skipping out-of-bounds terms

	Simplified Example
	Sharing the Exponent Block
	Tile Organization

	Exponent Base-Delta Compression
	Data Supply
	Evaluation
	Methodology
	Comparison under ISO-Compute-Area Constraints

	Area
	Execution Time
	Energy Efficiency
	Performance Analysis
	Skipped Terms
	Computation Phase
	Where Cycles Go
	Performance Over Time
	Effect of Tile Organization

	Accuracy Study
	Per Layer Accumulator Width Profiling

	Summary

	Conclusion and Future Work
	Summary of Contributions
	Directions for Future Work

	Bibliography

